Tutl

SCHOOL OF COMPUTATION,

INFORMATION AND TECHNOLOGY -
INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics: Games Engineering

Developing Extended Reality Real-Time
Collaboration Methods for Spatial Design
Processes

Felix Neumeyer

Tutl

SCHOOL OF COMPUTATION,

INFORMATION AND TECHNOLOGY -
INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics: Games Engineering

Developing Extended Reality Real-Time
Collaboration Methods for Spatial Design
Processes

Entwicklung von Extended-Reality-Echtzeit-
Kollaborationsmethoden fiir riumliche

Designprozesse
Author: Felix Neumeyer
Supervisor: Prof. Gudrun Klinker, Ph.D.

Advisor: Daniel Dyrda
Submission Date: May 15, 2023

I confirm that this Master’s Thesis in Informatics: Games Engineering is my own work
and I have documented all sources and materials used.

Munich, May 15, 2023 Felix Neumeyer

Abstract

The integration of Extended Reality (XR) together with real-time collaboration is
expected to enhance the efficiency and effectiveness of spatial design processes. In
this thesis, a Virtual Reality-based spatial design prototype was created, incorporating
a variety of collaborative tools and features such as multi-user undo/redo, shared
assets and their placement, virtual pointing, and teleportation tools. A user study
was conducted to assess the importance of these prototype features and to explore
new ideas for collaborative tools. User study participants expect VR-based spatial
design tools to effectively supplement existing workflows, particularly among those
with previous VR experience. However they are not considered a full replacement for
conventional 2D editor tools. Most user study participants expressed a desire to use a
VR-based spatial design application.

Additionally, real-time collaboration was introduced to Hololayer, an existing indus-
trial Augmented Reality (AR) system at Siemens. The integration of a WebSockets-based
client in conjunction with a distributed key-value store enables real-time updates for
entities within the Hololayer system. Individual properties are synchronized between
the key-value store and the client-side using reactive design patterns. The integration
lays the foundation for more complex collaborative features to be implemented for the
Hololayer system.

Future work should consider integrating additional collaborative features into the
spatial design prototype, guided by the suggestions from user study participants. The
prototype could be used to evaluate collaborative VR-based spatial design methods in
additional user studies. The Hololayer collaboration system could also be extended
to enable additional functionality, like prohibiting multiple users to modify the same
key-value pairs in parallel. Overall, this research highlights the transformative potential
of XR technologies in enhancing the efficiency, effectiveness, and collaborative nature
of spatial design processes.

1ii

Zusammenfassung

Die Integration von Extended Reality (XR) mit einem Fokus auf Echtzeit-Kollaboration
in rdumliche Designprozesse kann deren Effizienz und Effektivitit steigern. In dieser
Arbeit wurde ein Virtual Reality-basierter Prototyp fiir raumliche Designprozesse er-
stellt, der einige kollaborative Funktionen wie Mehrbenutzer-Undo/Redo, eine geteilte
Asset-Bibliothek sowie die Platzierung von Assets, Laserpointer und Teleportation zu
anderen Nutzern integriert. Eine Nutzerstudie wurde durchgefiihrt, um die Wichtigkeit
dieser Prototyp-Funktionen fiir raumliche Designprozesse zu bewerten und weitere
Ideen fiir kollaborative Werkzeuge zu sammeln. Insbesondere Teilnehmer der Benutzer-
studie mit vorheriger VR-Erfahrung erwarten, dass VR-basierte Design-Funktionen
bestehende Arbeitsabldufe effektiv ergdnzen konnen. Sie werden jedoch nicht als voll-
standiger Ersatz fiir herkdmmliche 2D-Editoren betrachtet. Die meisten Teilnehmer der
Benutzerstudie wiirden eine VR-basierte Raumdesign-Anwendung verwenden wollen.

Zusatzlich wurde Echtzeit-Kollaboration in Hololayer integriert - ein industrielles
Augmented-Reality-System von Siemens. Echtzeit-Aktualisierungen von Objekten im
Hololayer-System wurden durch die Integration eines WebSockets-basiertem Clienten in
Verbindung mit einer verteilten Schliissel-Werte-Datenbank erreicht. Einzelne Attribute
von Objekten werden von der Client-seitigen Anwendung unter Verwendung von
reaktiven Programmiermustern mit der Schliissel-Werte-Datenbank synchronisiert. Die
Implementierung dient als Basis zur Entwicklung weiterer kollaborativer Funktionen
tiir das Hololayer-System.

In Zukunft konnten weitere kollaborative Funktionen in den Prototypen fiir rdum-
liche Designprozesse eingebunden werden. Dafiir konnen die Vorschldge der Nutzer-
studienteilnehmer in Betracht gezogen werden. Der Prototyp konnte auflerdem in
zukiinftigen Nutzerstudien zur Evaluation kollaborativer Funktionen benutzt werden.
Das Kollaborations-System fiir Hololayer konnte auch durch weitere Funktionalitdten
ergdanzt werden, wie beispielsweise das Blockieren von parallelen Schreibvorgdangen
auf dem selben Schliissel-Werte-Paar durch verschiedene Nutzer. Zusammenfassend
zeigt diese Arbeit das Potenzial von Extended Reality zur Steigerung von Effizienz und
Effektivitat von kollaborativen raumlichen Designprozessen.

v

Contents

Abstract

Zusammenfassung

1

Introduction

1.1 Research Questions e
1.2 Extended, Virtual and Augmented Reality
1.3 From Spatial Design to Level Designin VR

Related Work
2.1 Collaborative XR and VR for Spatial Design
22 Networking

Collaborative Virtual Reality Prototype

31 KeyUseCases,

3.2 XRInteraction Toolkit

3.3 Networking (Netcode for GameObjects)
3.3.1 NetworkObject
3.3.2 NetworkBehaviour
3.3.3 NetworkVariable<T>
3.34 NetworkTransform
3.3.5 Remote Procedure Calls (RPCs)
336 NetworkManager

3.4 Toolsand Features
34.1 Asset Menu and Placement
3.42 Object Modification (CollabXRGrabInteractable)
343 LaserPointer
344 3DPen
345 Teleportation

3.5 Collaborative Undo/Redo
3.5.1 Undo/Redo Architecture
3.5.2 Visualizing Undo/Redo Targets
3.53 Undo/Redo Strategies

iii

iv

W INDN =

NS

Contents

3.5.4
3.5.5

Combining Methods
Undo/Redo Commands

3.6 Avatar and Personalization

Collaborative Industrial Augmented Reality Implementation
41 Hololayer.

411
4.1.2
4.1.3

DataModel
Authorization o 000 L.
Existing Approach to Data Updates

42 Collaboration Server

421
422
423
424
425
4.2.6
427

Overview
Collaboration Server Operations
Storing Hologram State
Committing Hologram State
Scaling and Partitioning
CloudvsEdgeNode
Choice of Communication Protocol

43 Implementation

43.1
432
4.3.3
434
435
4.3.6

Evaluation

UniRx, Subjects and Observables
Collaboration Components
State Synchronization
Serialization of CollabProperty<T> Values
Performance Considerations
Collaborative Features

5.1 Collaborative Spatial Design User Study

511
512
513
514
5.1.5

Participants L
Use-Case and Feature Brainstorming
Virtual Reality Prototype Feature Feedback
Using Collaborative VR for Spatial Design Tasks

Limitations and Problems

5.2 Hololayer Collaboration

521
522

Conclusion

End-to-end latency
Limitations and Problems

6.1 Spatial Design Prototype
6.2 Hololayer Collaboration

25
25
26
27
28
28
28
29
30
30
31
31
32
33
34
35
37
38
41
43

45
45
45
46
48
52
54
55
55
55

Vi

Contents

6.3 FutureWork
6.3.1 Collaborative Features
6.3.2 Additional User Studies
6.3.3 Hololayer Collaboration

List of Figures
List of Tables
Bibliography

Appendix
6.1 Collaborative Spatial Design User Study

62

64

65

67

vii

1 Introduction

The rapid evolution of technology has significantly impacted the way we approach
creative and design processes, with remote work having become an essential component
across almost all industries. Virtual Reality (VR) emerged as a relatively cost-effective
way to experience and leverage 3d environments, as VR headsets like the Meta Quest 2
are available for about 400€. Initially used for gaming and entertainment purposes, VR
has potential to be a valuable tool in design-related disciplines, especially architecture
and construction can benefit [1]. Spatial design tasks, such as level design for games
and architectural design reviews may greatly benefit from collaboration within Virtual
Reality as well. There are unique opportunities to enhance the efficiency, effectiveness,
and overall quality of the design outcomes by allowing multiple stakeholders to
work together in real-time, share insights, and streamline decision-making processes.
Collaborative tools have already demonstrated their value in daily tasks, as evidenced
by the widespread adoption of platforms like Google Docs!, Microsoft Word?, and
Figma®. These tools facilitate seamless collaboration and teamwork, enabling users to
work on the same documents, designs, or assets simultaneously, regardless of their
location. Consequently, these tools have significantly improved the way individuals
and teams approach their work and enhance productivity.

However, the potential of collaborative software for spatial design tasks in Extended
Reality (XR), encompassing Augmented and Virtual Reality, remains relatively un-
tapped. XR promises new opportunities for collaboration of designers and stakeholders.
For instance, virtual reality can be used to enable full-scale architectural visualization
of designs, which is impossible with traditional visualization techniques. In the context
of level design for games, the benefits could be substantial. When developing games
for VR, level designers often face the challenge of constantly switching between the
traditional desktop-based game engine editor and the VR game view to evaluate the
effects of their modifications. Furthermore, when multiple designers are working on
the same scene from different PCs, changes by the other designer are not immediately
visible. We aim to explore what kind of collaborative features are needed for effective
spatial design within VR and AR, implement some of them in the context of a VR

Thttps:/ /www.google.de/intl/en/docs/about/
Zhttps:/ / office.com/word /
Shttps:/ /www.figma.com/

1 Introduction

level design prototype and enable real-time collaboration for Hololayer - an industrial
augmented reality system at Siemens that can also be used for spatial design tasks [2].

1.1 Research Questions

This thesis consists of two parts. In the first part, described in Chapter 3, the general goal
was to develop a virtual reality level design prototype, including a set of collaborative
features and tools. Additionally, we wanted to gather ideas for additional collaborative
spatial design features and tools, rank them by their importance and evaluate the
features of the prototype, by conducting a user study with mostly expert users. Those
features are most probably not inherent to level design, but can be useful in various
spatial design domains, including industrial augmented reality.

In the second part (Chapter 4) we are integrating a real-time collaboration approach
into Hololayer - an existing industrial augmented reality system at Siemens. By
implementing and integrating a WebSockets-based client into the Hololayer app we lay
the foundation for additional collaborative features to be implemented for the Hololayer
system.

The main research questions we want to answer are:

1. What kind of features are most important for collaborative spatial design?
2. Would level designers want to use VR for collaborative level design?

3. Is our approach for real-time communication in the Hololayer system viable?

1.2 Extended, Virtual and Augmented Reality

Extended Reality, Virtual Reality, and Augmented Reality are related but distinct
concepts in the realm of immersive technologies. Extended Reality (XR) is an umbrella-
term that encompasses all immersive technologies that combine the physical and digital
worlds. It includes Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality
(MR), as well as future technologies that have yet to be developed. XR aims to create
seamless interactions between users and the digital environment, enhancing various
aspects of human experience.

Virtual Reality is a fully immersive, computer-generated environment that simulates
physical presence in real or imagined worlds. Users wear headsets, like the Meta Quest,
Oculus Rift or HTC Vive, which track their head movements and display 3D images,
creating the illusion of being in a different environment. VR often incorporates other

1 Introduction

sensory inputs, such as audio and haptic feedback, to provide a more convincing and
engaging experience.

Augmented Reality involves overlaying digital information, images, or objects onto
the real world, enhancing the user’s perception of their surroundings. This technology
can be experienced through various devices, such as smartphones, tablets, or specialized
AR glasses like the Microsoft HoloLens. Unlike VR, AR allows users to maintain
awareness of their physical environment while interacting with digital content, making
it well-suited for applications like navigation, education and instructions.

1.3 From Spatial Design to Level Design in VR

Spatial design can be generally defined as any type of active spatial appropriation,
whether it is a room or a landscape [3]. More specifically it refers to the design of human
environments, encompassing aspects of interior design, architecture, urban planning,
and landscape architecture [3]. Many of these aspects are also found in game level
design, as its goal is to build convincing, immersive worlds for the player to experience
while optimizing function, aesthetics or emotional response among other things. In
addition to spatial design considerations, level designers also have to think about
gameplay elements, modalities and abilities of the player inherent to the game they are
building. Designing levels for virtual reality is also different from traditional platforms
like PC or consoles, especially in comparison to games in third-person view. From
talking with people who have worked with VR extensively I gathered that designing
game levels for VR directly in VR could be of great benefit since you normally have
to switch between the game engine editor and running the game on the VR headset.
Being able to modify something directly in VR, or leaving annotations about what you
want to change later in the engine editor can be very helpful.

2 Related Work

To my knowledge there is no academic work specifically about collaborative spatial
design in VR. However there are applications for collaborative design in VR.

2.1 Collaborative XR and VR for Spatial Design

Commercial Products Nvidia Holodeck is a virtual reality collaboration platform that
allows designers, coworkers and stakeholders to perform design reviews, focusing
on realistic graphics [4]. From a demonstration video on the product page, it seems
to feature tools like 3D pen annotations, a laser pointer, voice chat and the ability to
change materials of objects [4]. Specific designs - buildings in the video - can be loaded
onto a "HoloTable" as miniature models to discuss them and potentially enter them in
their real life scale. However, the platform does not seem to have gained traction, as it
is still in "Early Access" since its announcement in 2017.

Gravity Sketch! is a VR-based 3D design platform to create, collaborate and review. Its
main purpose is creating 3d designs of objects that can be exported as 3D models. Cre-
ating assets for use in spatial design can be considered part of the spatial design process.

Tilt Brush? is a VR-based 3D painting application. Users can choose from various
brushes for painting. It is more of an art rather than a design application, but 3d
painting can also be considered a form of spatial design, or at least it can be a tool for
spatial design.

The Unity EditorXR Plugin was designed to transform common functionalities from
the traditional Editor into VR, like object transformations [5]. In addition, it also
provides annotation tools like 3D drawings. However the EditorXR plugin is no longer
developed by Unity and not supported in newer versions of the Unity Editor.

Thttps:/ /www.gravitysketch.com/
Zhttps:/ /www.tiltbrush.com/

2 Related Work

Academic Work Beever et al. developed a VR system and workflow called "LevelEd
VR", which supports the level design and creation process for VR games [6]. Their
system focuses on the blockout process and aims to improve the understanding of
scale and object positioning in VR environments. Users of LevelEd VR reported that
it allowed them to spend more time iterating on gameplay due to the improvements
in judging scale and object positioning. The system also enabled seamless transitions
between editing and testing, enhancing workflow efficiency [6]. The potential for
efficiencies is also noted in terms of the system’s runtime capabilities, which allow it to
operate on standalone systems such as the Oculus Quest. This opens up the possibility
of working away from a desktop or laptop PC, thereby making the design process more
flexible and versatile. Comparing their runtime editor to other systems, such as Unity
Editor XR and Unreal Engine VR Mode, was suggested as a future line of inquiry [6].

Continuing the investigation into different aspects of design in VR, Choi et al. [7]
proposed a unique framework for designing user interfaces that provide architects with
an alternative spatial environment in Virtual Reality (VR). The framework is based
on the examination of three types of spaces: Intuitive Physical Space (IPS), Projected
Digital Space (PDS), and Immersive Virtual Space (IVS). The IPS is the actual physical
space in which we live and interact. The PDS is the digital representation of space
projected onto a 2D screen, commonly used for plan drawings and bird-eye view
renderings. Finally, IVS, which corresponds to VR, is an immersive 3D virtual space
where designers can experience their creations, which is the main focus of the study
[7]. Choi argues that IVS can combine the strengths of both the real physical space
(IPS) and two-dimensional screen space (PDS). In IVS, designers can perceive the scale,
proportion, and spatial relationships of their designs as they would in the real world
(IPS). They can navigate around the design, get up close to specific parts, or move back
to see the whole. In this way, IVS offers an intuitive understanding of space that is
similar to our physical experiences in the real world [7]. While PDS excels at offering
a broader perspective of the design, such as a bird-eye view or a plan view, IVS can
replicate this by allowing users to zoom out or view their designs from an elevated
perspective [7]. This can help in understanding the overall pattern or structure of a
design [7].

By combining these aspects, Choi argues that IVS (Virtual Reality) provides a unique
and powerful environment for the spatial design process. It allows architects to design
in a virtual space that mimics the intuitive understanding of scale and space of the
physical world (IPS), while also providing the broader perspective and precision of
digital projections (PDS) [7].

It is also worth examining functionalities within collaborative systems that can en-

2 Related Work

hance their utility. One such functionality is the ability to undo and redo actions. In
multi-user applications this becomes a more complex task. Rendl et al. conducted an
empirical study to understand user expectations regarding undo and redo function-
alities in single and group work scenarios [8]. They discovered that groups generally
expect a group-oriented undo function, while individuals expect a user-oriented undo.
These expectations are often met through a regional undo functionality, which provides
a global undo for each region where a group or individual is working [8]. Based on
this insight, Rendl et al. presented the requirements for implementing regional undo in
a large-scale multi-user application. They proposed four techniques for determining
the workspaces or regions of different groups and individuals working simultaneously
on the whiteboard. Besides a manual concept where users define regions themselves,
they presented automated procedures that form regions based on document content,
the position of users, or the users’ field of view [8].

2.2 Networking

Ubi-interact is a framework for interactive applications combining individual distributed
systems and devices over a network [9]. It discusses several design choices to make
when developing such a system, including event-based communication, serialization
and edge computing capabilities [9]. Its modularity allows users to integrate various
systems and devices, already providing nodes for CSharp, Javascript, C++ and Java [9].

Netcode for GameObjects (Netcode) is a networking library specifically designed for
Unity that allows you to simplify networking logic [10]. It enables the transmission of
GameObjects and world data to multiple players simultaneously during a networking
session. By using Netcode, implementation focus can be shifted from dealing with
low-level protocols and networking structures to primarily creating your game [10].
We therefore use Netcode in our prototype implementation and describe it in detail in
Section 3.3.

3 Collaborative Virtual Reality Prototype

This chapter describes the design and implementation of a collaborative spatial design
prototype for editing scenes in VR inside the Unity Editor.

3.1 Key Use Cases

To come up with useful tools for collaborative spatial design, I thought about the tasks
level designers have to fulfill and how they might want to collaborate with other people.
I decided to write the use cases in the style of user stories. In software development
and project management, a user story is an informal, natural language description of
one or multiple features of a software system. It describes what a user wants to achieve
while using the software, potentially also detailing why. I wrote down a number of
user stories that describe common use cases for level designers in virtual reality, which
are listed in the table on the next page.

I selected some features from the user stories that I thought were essential to col-
laborative level design. First and foremost, the prototype needed to support common
base functionality, like locomotion and grabbing or transforming objects, but those are
not collaborative features. From the list I selected the idea of adding assets from a
predefined set of objects, since assets are what makes up most of a level. There also
had to be a list of collaborators and the possibility to find them within the scene. In
order to effectively talk about a level design task at hand, I also wanted to include
the laser pointer and 3d sketch functionalities. Finally, I imagined that reverting or
re-applying changes is extremely important to level design, as it is common to try out
different object placements. The features I implemented did not necessarily have the
highest importance rating on the user story list, but were still essential to the prototype
in order to provide some base functionality. Other arguably more important features
would have been more complex to implement, or would simply not provide the base
functionality needed for the prototype.

3 Collaborative Virtual Reality Prototype

Table 3.1: User Story Feature List

As a level designer in a collab-
orative level design session I
want to...

Implementation Details

Importance
Rating (1-5)

Know who is currently work- | Collaborator list 5
ing on the level
See where my collaboration | Mini map (miniature) with user | 5
partner currently is and travel | icons; Add Teleport/Show on Map
to them Button to Collaborator List
Direct my collaboration part- | Laser pointer; Laser pointer that | 5
ner’s attention to what I'm | leaves a temporary trail where it
talking about hits; Highlight/outline shader
Undo/redo changes I made to | Collaborative undo/redo 5
objects
Talk to my collaboration part- | Integrate voice chat solution (Dis- | 5
ners via voice chat cord SDK?)
Import sketches or other im- | Import level sketch and align it | 5
ages (png/jpg) to the level for | with level dimensions, so you can
reference add shapes during blockout phase

on top of the sketch
Create change proposals with | Notification icon with number of | 5
multiple variations to choose | change proposals pending
from, so that collaborators can
decide which version they pre-
fer
Make save points between it- | For whole scene vs on a per-object | 5

erations with the ability to
switch through different iter-
ations collaboratively

basis; Tracking changes of each ob-
ject and requiring acceptance of
changes by either the author or a
collaborator for it to be included
in the iteration; History of changes;
Ability to show a certain changed
object’s version as a preview (trans-
parent?)

Continued on next page

3 Collaborative Virtual Reality Prototype

Table 3.1 -

Continued from previous page

As a level designer in a collab-
orative level design session I
want to...

Implementation Details

Importance
Rating (1-5)

Modify translation, rotation | Grabbing and releasing objects in | 5

and scale of objects arms reach; Transformation han-
dles like in Unity Editor

Add assets from a predefined | Spawn prefabs that were defined | 5

set of objects in the Unity Editor

Create basic shapes (cubes, | Built-in tools for creating and ma- | 5

cylinders, spheres) nipulating basic shapes

Measure distances and sizes | Virtual shared ruler/measurement | 4

together with my collaborators | tape; Reference humanoid, unit
cube. ..

Hand over an object to a col- | Natural interaction vs "sending" it | 4

laborator over in front of the other person

Define a viewpoint from | Can quickly teleport to the view- | 4

where the player is intended | points defined for the scene; Have

to see the scene others look at the scene from a cer-
tain viewpoint; Have optional cam-
era feed(s) from these viewpoints
overlaid; Define an intended path
along which the player is supposed
to move; Animate camera along
path

Annotate the level with free- | Drawing 3d lines; Arrows 4

form sketches (3d controller)

Create free-form shapes Using voxels or other built-in tools | 4
for creating and manipulating free-
form shapes

Know when someone changed | Have notifications when an object | 3

an object in the scene is changed /added/deleted

Make a comment on a specific | List ~of unresolved com-| 3

object to start a discussion and | ments/threads; Notification

have others see it

icon with number of unresolved
comments

Continued on next page

3 Collaborative Virtual Reality Prototype

Table 3.1 -

Continued from previous page

As a level designer in a collab-
orative level design session I
want to...

Implementation Details

Importance
Rating (1-5)

Know who changed an object
or made an annotation

Show author information for each
object and annotation

See how the sunlight would
shine from different angles or
throughout the day

Ability to adjust time of day and
see changes in lighting; Sun path
diagram visualization

Annotate the level with text

Virtual keyboard is extremely cum-
bersome; Speech-to-text input; On
devices like Quest Pro you could
use pass-through to use keyboard

Annotate the level with icons

Predefined icons for typical game
elements (enemies, items, quest in-
teraction positions)

10

3 Collaborative Virtual Reality Prototype

3.2 XR Interaction Toolkit

The XR Interaction Toolkit is a Unity package designed for creating both virtual reality
(VR) and augmented reality (AR) experiences [11]. This high-level, component-oriented
interaction system allows for 3D and user interface (UI) interactions derived from Unity
input events [11]. Its framework primarily consists of base Interactor and Interactable
components, as well as an Interaction Manager that integrates these elements [11].

The toolkit encompasses a range of components that cater to a variety of interaction
tasks. These tasks include cross-platform XR controller input, which supports platforms
such as Meta Quest (Oculus), OpenXR, and Windows Mixed Reality, among others
[11]. It enables basic object interaction, such as hover, select, and grab functionalities
[11]. Additionally, the toolkit facilitates haptic feedback through XR controllers and
offers visual feedback, such as tint or line rendering, to highlight potential and active
interactions [11].

The XR Interaction Toolkit also enables basic canvas Ul interaction using XR con-
trollers [11]. Moreover, it contains a utility for interacting with the XR Origin, a VR
camera rig, which manages both stationary and room-scale VR experiences [11]. Over-
all, the toolkit provides the necessary tools for creating immersive and interactive XR
experiences and base components for 3D interactions [11]. What it does not contain
is a library of user interface components - it only allows interaction with the existing
Unity UI canvas-based components, but since this prototype is focused on collaborative
aspects, this is acceptable.

3.3 Networking (Netcode for GameObjects)

In order to implement collaborative features, I use Netcode for GameObjects (Netcode),
which is a high-level networking library for Unity [10]. It enables sending GameObjects
and their corresponding properties to other clients within a networking session, without
having to implement low-level protocols and networking code. In this section I outline
the main features and components of Netcode [10].

3.3.1 NetworkObject

Every GameObject that should replicate networked properties or send/receive Remote
Procedure Calls (see below) must have a NetworkObject component attached to it. Each
NetworkObject has a NetworkObjectld which uniquely identifies it among all clients.

11

3 Collaborative Virtual Reality Prototype

Ownership

A NetworkObject is always owned by exactly one client at a time. Making changes
to a NetworkObject usually requires Ownership. NetworkObject ownership can be
transferred to any client by the server. This is often necessary when a client wants
to modify an object’s position. The client will have to request ownership of the
NetworkObject in question first, before he’s able to modify its position.

3.3.2 NetworkBehaviour

NetworkBehaviour is an abstract class that derives from MonoBehaviour and is used to
create custom networked behaviours. Usually, to create networked objects, one can
derive from NetworkBehaviour and use NetworkVariables and RPCs (see below) to
synchronize state. Additionally to the NetworkObject component, a GameObject also
requires at least one NetworkBehaviour component on itself in order to use synchronize
networked state.

3.3.3 NetworkVariable<T>

NetworkVariables are a fundamental feature that allow developers to synchronize data
across the network with minimal effort. It is a wrapper around standard data types,
such as integers or strings, which automatically handles synchronization, ensuring that
the data remains consistent across all clients and servers. NetworkVariables can be
configured to use different update frequencies and to only send updates when the data
has changed, optimizing network performance.

3.3.4 NetworkTransform

The NetworkTransform component is a NetworkBehaviour provided by Netcode, which
synchronizes a NetworkObject’s transform (position, rotation, scale) between clients
within the networking session. Since Netcode is server-authoritative, any change to a
NetworkObject’s transform need to be issued by the host or server by default. In most
use-cases of this prototype, i.e. grabbing, moving and rotating an object with the con-
troller, changes to an object’s transform should be immediate and not require the server
to make the change first. Therefore, a ClientNetworkTransform component which
inherits from NetworkTransform and overrides the bool OnIsServerAuthoritative()
method while returning false, can be used instead, so that clients can make changes to
a NetworkTransform immediately without requiring confirmation by the server. This
ensures grabbing objects feels responsive without any networking-related lag. Owner-

12

3 Collaborative Virtual Reality Prototype

ship of the NetworkTransform’s NetworkObject is still required to make changes to the
ClientNetworkTransform if the client is not the host.

3.3.5 Remote Procedure Calls (RPCs)

RPCs are a critical feature of Netcode for GameObjects that allow developers to
execute code on remote clients or servers. They enable communication between
NetworkBehaviours on different machines, allowing for synchronization of actions
and events. Netcode offers three types of RPCs: Server RPCs, which are called on the
client and executed on the server; Client RPCs, which are called on the server and
executed on the client; and Custom RPCs, which can be invoked and executed by any
NetworkBehaviour.

3.3.6 NetworkManager

The NetworkManager handles the lifecycle of network connections, including establish-
ing, maintaining, and closing connections between clients and servers. It also oversees
the spawning and despawning of networked GameObjects. NetworkManager can be cus-
tomized by extending the NetworkManager class and implementing custom connection
logic, though this was not necessary for this project.

NetworkPrefabs

A NetworkPrefab is a prefab with a NetworkObject component attached, which allows it
to be instantiated and synchronized across all connected clients. All prefabs that should
get spawned during a networking session need to be added to the NetworkManager’s
NetworkPrefabs list. Only the server/host can spawn a NetworkPrefab. When a
NetworkPrefab is instantiated on the server, the server sends a message to all connected
clients, prompting them to instantiate the same prefab. This ensures that all instances of
the prefab on the different clients are synchronized and have the same NetworkObject
identifier, so that they can be addressed. Therefore, for this prototype every asset
that can be added to the scene during a networking session has to be added to the
NetworkPrefabs. I added an Editor script which makes it possible to automatically add
all prefabs within a pre-defined folder, which contain a NetworkObject component, to
the NetworkPrefabs list of the NetworkManager.

PlayerPrefab

A PlayerPrefab is a specific type of prefab in Netcode for GameObjects that repre-
sents the player-controlled objects in the scene. When a client connects to a server,

13

3 Collaborative Virtual Reality Prototype

a PlayerPrefab is instantiated for that client, providing them with an avatar or rep-
resentation within the collaborative level design environment. Each PlayerPrefab is
automatically assigned to the corresponding client, ensuring that players have control
over their own objects and can interact with the level as intended. The PlayerPrefab
instance of every connected client can be easily accessed through the NetworkManager.
For this prototype, the PlayerPrefab contains the whole XR-Setup of the user, like
tracked headset and controllers and other user-specific objects. When a PlayerPrefab is
spawned for other clients (in contrast to the local user’s client), we need to deactivate
all components that should only run on the PlayerPrefab instance of the local client.
E.g. all PlayerPrefab instances which belong to remote clients have their head-pose
and XR-controller tracking disabled as their transforms are driven by the remote client.

Recycle Network Ids

By default, the NetworkManager recycles the NetworkObject.NetworkObjectlds after a
specified period of time. In case of this prototype, this had to be disabled in order to
retain unique NetworkObjectlds if a NetworkObject had been despawned. This is due
to the Undo/Redo feature described later, which allows to revert and then re-issue a
spawn command, which causes the re-spawned object to obtain a new NetworkObjectld.
A reference from the old to the new NetworkObjectld is saved, so that any undo/redo
commands that reference the despawned object can still find the re-spawned object. If
the old NetworkObjectld had been re-used, a different object than intended could be
referenced inside an undo/redo command.

3.4 Tools and Features

This section describes the tools and features that were implemented for this prototype.
Tools can be opened through the main menu by holding the right controllers primary
button for one second. The main menu then opens in front of the controller, so that the
different tools can be accessed quickly (see Figure 3.1).

3.4.1 Asset Menu and Placement

The Asset Menu allows a user to add various pre-defined assets to the scene. The assets
are categorized based on the folder that contains them in the Unity project and shown
in different tabs of the menu (see Figure 3.2). Users can scroll through the assets in
each category by either hovering arrow buttons with their controller, or by holding the
controller’s trigger button while pulling the menu in the scroll direction. By pressing
the arrow buttons, the scrolling speed increases. When selecting an asset with the

14

3 Collaborative Virtual Reality Prototype

Figure 3.1: Left: User list with buttons for teleporting to other users. Right: Main
menu with tool selection buttons for laser pointer, 3D pen, asset menu and
measurement tool.

controller, it is spawned and attached to the RayInteractor of the controller. The object
is spawned at a distance corresponding to the size of the object, so that large objects are
spawned farther away, while small objects are held close initially. The distance to the
controller is chosen based on the diameter of the asset’s bounding box. This ensures that
the asset is positioned far enough away in front of the user’s right-hand controller, so
that it is fully visible from the user’s perspective, as spawning and holding a very large
object, like a house, too close to oneself, feels uncomfortable. The XRRayInteractor in
combination with the CollabXRGrabInteractable on each asset allows a user to rotate
and move the object around before finally placing it. The menu closes when an asset
is selected and spawned, but opens up again, when the object is placed, so that the
next object can be selected quickly. To spawn multiple instances of the same asset
without re-opening the Asset Menu, the “Repeated Placement” option in the menu can
be used. The assets placed by users during the current collaboration session are added
to the “Recent” tab of the asset palette, allowing users to quickly find them again and
continue working where they left off.

Spawning Assets

Only the host/server can spawn NetworkPre fabs (see Section 3.3.6), therefore any client
trying to spawn an asset needs to send a ServerRpc to request an asset to be spawned.

15

3 Collaborative Virtual Reality Prototype

P_ENV_TRE.. P_PROP_PL.. P_PROP PL.. P_PROP_PL.. P_p

Undo § Redo " Undo | Redo

Figure 3.2: Left: Asset Menu with assets categorized in different tabs. Center: An asset
that was selected through the menu is attached to the RayInteractor and
being placed. Right: The rotation axis is visualized for the object being
placed.

It passes the path/Asset Address to the prefab to be spawned, and a local request
number to the ServerRpc. The client manages a SpawnRequestDictionary that maps
the request number to a spawn callback. Once the server has spawned the asset, it
will invoke a ClientRpc on the client who requested the asset to be spawned, passing a
NetworkObjectReference for the spawned object and the request number to the client.
The request number can be used to pass the spawned object to a spawn callback by
finding the correct callback in the SpawnRequestDictionary.

3.4.2 Object Modification (CollabXRGrabInteractable)

The base functionality provided by the XRGrabInteractable, which is included in the
XR Interaction Toolkit, is mostly sufficient, but there were a few issues. For example,
rotating the grabbed objects would either depend on the orientation of the controller
when the object was grabbed, or it would rotate the object only around one axis, but
around the attach point, which lies at the intersection point of the RayInteractor and
the object, on the outside hull of the object. This would make rotating objects awkward.
Rather, I wanted the object to rotate around its own local coordinate system, as objects
are usually centered. Additionally, I also added functionality to rotate the object around
the object’s local X, Y or Z axis. By pressing the joystick button, the user could switch
between the axes to rotate around. When switching between the axes, the currently

16

3 Collaborative Virtual Reality Prototype

selected axis is shown for a limited time (see Figure 3.2 on the right).

3.4.3 Laser Pointer

The laser pointer is an extension of the users’s hands and arms and visualizes the
pointing direction of the user if a button is pressed on the controller (see Figure 3.3).
Using a Unity LineRenderer component, which is attached to the tracked 3D Controller,
a line is rendered, starting at the user’s controller position and extending until the line
hits any object. The end of the line, meaning the line intersection with an object, is
determined by using a Unity Physics.RayCast.

The laser pointer’s main use is to enhance communication and interaction among
team members. This allows users to easily and precisely indicate specific areas or
objects within the environment, thus facilitating clearer and more efficient discussions
about design decisions, potential modifications, or problem areas. This targeted
pointing mechanism eliminates ambiguity and ensures that all team members are on
the same page regarding the subject of discussion. It may also be used as a navigational
aid, enabling users to guide each other in complex level designs. In addition to the
pointing function, the laser pointer also measures the distance between the user’s
controller and the surface at which the laser hits. The distance is shown to the user as
a small text box attached to the controller used for measurement. For other users the
distance measurement is shown as an enlarged text box above the user performing the
measurement as you can see in Figure 3.3.

Figure 3.3: The user on the left observes the other user on the right, while he is pointing
with the Laser Pointer. The distance measurement is shown to both users.

17

3 Collaborative Virtual Reality Prototype

3.4.4 3D Pen

A pen has been implemented for making 3D sketches and annotations within the
scene (see Figure 3.4). These sketches have a multiple potential use cases. They can be
temporary representations of objects that will later be replaced with other assets. The
3D pen can be a valuable tool for enhancing the collaborative creative process. It allows
level designers to quickly sketch out rough ideas, layouts, and spatial relationships
directly within the virtual environment, enabling an intuitive and immersive design
experience. The 3D pen can also be used to create annotations or labels directly on
objects and surfaces, helping in communication among team members by providing
context, explanations, or feedback on specific aspects of the design.

In addition to these functions, the 3D pen enables designers to experiment with
various shapes and forms, quickly iterating and refining their ideas in 3D space. This
flexibility facilitates rapid prototyping of level design elements, such as structures,
terrain, and other assets, allowing designers to assess their feasibility and visual impact
before committing to a final version.

One of the main advantages of using a 3D pen in a shared virtual environment is the
ability to work together in real-time. Team members can sketch and annotate the design
as they discuss and exchange ideas, fostering collaboration and streamlining the creative
process. Furthermore, the 3D pen can help facilitate clear and efficient communication
between designers, artists, and developers by allowing them to express their ideas
visually and spatially, instead of relying solely on verbal or written descriptions.

Overall, incorporating a 3D pen into level design can significantly enhance the
creative process by enabling intuitive sketching and annotation within the virtual
environment, while promoting collaboration and efficient communication among team
members. Collaborators don’t have to possess artistic skills for using the 3D pen for
basic annotations and to better communicate their thoughts.

3.4.5 Teleportation

The teleportation functionality can be accessed through the main menu to quickly
find other users and travel to them. A user list is shown in the main menu with a
Teleport button next to each connected user (see Figure 3.1). The algorithm tries to find
a location next to the target user at a distance that is socially acceptable for colleagues
at 1.8 meters away. If the user stands close to objects, the teleportation algorithm tries
to spawn in the remaining free space. For example, when the sides (left and right) are
blocked, the algorithm prioritizes the back of the target users, to not startle them or
block their view. Finally, if there is absolutely no space around the target users, the
user is teleported above the target user.

18

3 Collaborative Virtual Reality Prototype

Figure 3.4: Left: Writing text in 3D. Right: Placeholder for a door asset to be added.
The arrow indicates that the door should be functional.

3.5 Collaborative Undo/Redo

One of the most important features of any creative editing software is reversible actions,
so users can undo/redo their changes. To quickly iterate, designers usually use undo
functionality regularly. In level design, it also makes a lot of sense to compare different
versions of object placements, as the scene can be observed from different viewpoints.
While Undo/Redo can already be a tricky feature to implement on its own, it’s even
harder in a collaborative environment. Depending on the scenario, users might want
to undo changes of other users, but in other cases, they only want to affect their
own modifications. Therefore, there is the need for different Undo/Redo strategies.
Below, we discuss the shortcomings of each method and how they may be mitigated by
combination of methods. There are two different undo/redo methods implemented in
this prototype (the Semi-Local and View-based methods) that the user could potentially
switch between.

3.5.1 Undo/Redo Architecture

Reversible actions are implemented using the command pattern, which is the most
well-known use for it [12]. Every action that needs an undo/redo, implements
the IModificationCommand interface. In order to register commands on the server
a ServerRpc needs to be sent. Every undo/redo action also has a corresponding struct
that implements the INetworkSerializable interface by Netcode, which can be sent to

19

3 Collaborative Virtual Reality Prototype

the corresponding ServerRpc. In order to make sure that state is always in sync between
collaborators and since Unity Netcode for GameObjects already uses an authoritative
server, all undo/redo commands are only stored and executed on the host/server.
To issue an undo or redo operation, clients issue an undo or redo ServerRpc, which
allows the server to find and execute the next command for the corresponding user.
Depending on the strategy selected, the next undo/redo command will be determined
with different algorithms.

3.5.2 Visualizing Undo/Redo Targets

Users have Undo and Redo buttons attached to their left hand controller. When they
hover the buttons, the corresponding undo/redo target will be highlighted. The target
object’s shader is replaced to render it with a yellow tint instead (see Figure 3.5 on the
left).

Figure 3.5: Left: Box on top is highlighted by a yellow tint as the next undo target. The
yellow lines were added to clarify which box is highlighted, as it is hard
to see in the screenshot. Center: Collaborator is drawing using the 3D Pen.
Right: User is undoing the drawing made by the other user.

20

3 Collaborative Virtual Reality Prototype

3.5.3 Undo/Redo Strategies
Global Undo/Redo

While this strategy was not used for the prototype, it’s arguably the simplest strategy.
For global undo/redo all modification commands by all users are stored in a sequential
list of modifications, in the order they were applied. To undo or redo modifications,
the list can simply be stepped through sequentially. If 7 is the index of the modification
that was applied last, the next modification to undo and redo are located at indices
i —1 and i + 1 respectively. The implementation for collaborative global undo/redo
is the same as for single-user applications, except that modifications of multiple users
are stored in the modification list. The global undo/redo strategy is mostly not suited
for collaborative environments, as users need to be able to undo their own changes
without affecting changes made by other users. If an user A modifies object X, and user
B afterwards modifies a different object Y, user A should ideally be able to undo the
change to object X without affecting user B’s change to object Y - but using the global
undo/redo strategy, the change of user B to object Y has to be reverted first, before user
A can revert the change on object X.

Local Undo/Redo

The local strategy only allows users to undo their own changes, but not changes by
other users. It can be implemented by keeping a separate list of sequential modifications
for each user, or by filtering a global list of modifications by the target user. As long
as there are no dependencies between modifications made by different users, it is also
fairly simple to implement. However, as the same object can be modified by multiple
users, each user’s modifications can not be applied or reverted sequentially without any
further dependency checks. If user A modifies an object X, and then user B modifies
object X, user A should not be able to revert his change on object X, as user B’s change
is the most recent change on object X. In order to undo the changes on object X, user B
has to undo his change before user A.

Semi-Local Undo/Redo

To circumvent the short-comings of the local undo approach, that you can not apply or
revert other users’ changes, I propose the Semi-Local strategy. The Semi-Local approach
allows users to revert changes to objects that were issued by other collaborators if their
next local undo operation (which they issued themselves) would target this object. By
allowing users to revert other people’s changes on objects that they themselves have
undo operations lined up for, users can efficiently work with objects that were collab-

21

3 Collaborative Virtual Reality Prototype

orated on. However, there are still interactions between collaborators that wouldn’t
be handled well with this method. For example, if a user A moved an object X to the
region of user B, where user B is currently working in, object X’s by user A will not be
available to user B by default, as he hasn’t interacted with the object yet himself.

View-based Undo/Redo

Using the view-based method, users can undo changes on objects that they currently
see, including objects modified by others (see Figure 3.5). This method was inspired
by similar work that used a user’s field of view for regional multi-user undo/redo for
large interactive surfaces [8]. Users can select the region in which the next undo/redo
operation will be selected by simply looking in the desired direction where their
modifications to undo or redo are. We limit the objects to those inside the user’s
view, because we do not want to undo changes by other users that might be working
elsewhere in the scene, as it would happen with the Global Undo/Redo strategy, but we
still want to affect objects modified by others. Users may still encounter scenarios where
they want to undo changes on an object within view, but there’s another object right
next to it with more recent changes. Repositioning to only have the wanted object within
view might be cumbersome. Therefore we also propose the Object-based Undo/Redo
strategy below, which was not implemented anymore due to time-constraints.

Implementation Details For undo/redo targets to be found within the view of
the user, I implemented a method to cache all modifications within the view of
the user that relies on Unity’s existing physics implementations. Each command
has a PositionBefore and PositionAfter property, optionally specifying where
the command is positioned within the virtual environment. For each command,
we add a GameObiject containing a SceneCollabModificationReference component
that references the modification command and has SphereCollider components at
the PositionBefore and PositionAfter locations that are large enough to contain the
target GameObject. As a child to the the Camera GameObject of a user, we at-
tach a "Frustrum" GameObject. We add a MeshCollider and Rigidbody component
(isTrigger and isKinematic are true) representing the camera frustrum to the Frustrum
GameObject. On the same GameObject, the FrustrumModificationReferenceCache
then keeps track of all GameObjects that collide with the frustrum collider and have
a SceneCollabModificationReference component on them by overriding the OnTrig-
gerEnter/Exit functions. Therefore, we can track all modifications that currently
collide with the camera frustrum of each user. We sort the modifications by their
modificationld to find the newest/oldest commands.

An issue with the current implementation is that the GameObjects with

22

3 Collaborative Virtual Reality Prototype

SceneCollabModificationReference components have SphereColliders and not Mesh-
Colliders that match their target objects exactly. That means that the Undo/Redo
commands are not perfectly matching the positions of their target objects. A command
targeting a large house for example has a very large SphereCollider that is larger than
the house itself. This may cause the large object to be targeted even though it is not
within view of the user. This can be mitigated by using the same collider as the target
object, but would require to also store the rotation before/after a modification for each
command. Therefore the objects within the FrustrumModificationReferenceCache do
not perfectly match the objects that are visible to the user, which is not intuitive to the
user.

Object-based Undo/Redo

The implementation of the View-based Undo/Redo already required the grouping of
undo commands per object, as only the latest undo command of an should be consid-
ered as the next target command. We could allow users to access the history of changes
of a specific object, e.g. by adding a Undo/Redo tool that uses the RayInteractor to
select an object and listing all changes on that object. This may be preferable to the
View-based Undo/Redo in some scenarios, when users want to affect just one object,
but not everything within view.

3.5.4 Combining Methods

Since there is no one Undo/Redo Strategy that is perfect for every scenario, I assume
that giving users the ability to select the Undo method they want to use is the best way
to mitigate. Users may switch between methods depending on the current situation.
For example, they may use the Local Undo/Redo method while working alone, but can
switch to the View-based method when they encounter changes made by other users
that they want to revert.

3.5.5 Undo/Redo Commands

Transform Modification The TransformModificationCommand allows applying and
reverting of transform changes to an object. When a CollabXRGrabInteractable is
grabbed and let go again, a new TransformModificationCommand is added to the
ModificationManager, which saves the original and resulting transform (position,
rotation and scale) from before grabbing and after repositioning the object.

Spawn The SpawnCommand can spawn prefabs that have been registered to the
NetworkManager, deleted and respawned. This is achieved by providing the as-

23

3 Collaborative Virtual Reality Prototype

set address as a string to the SpawnCommand. For redo to work on objects
than have been despawned and respawned, we need to make sure that the
NetworkObjectReference of the respawned object can be found. To realize this,
I added a static NetworkObjectReferenceExtensions class that adds an extension
method GetRespawnedReference(...) to the NetworkObjectReference struct. Ev-
ery time an object is respawned through the SpawnCommand, we add an entry to
a static Dictionary<NetworkObjectReference, NetworkObjectReference> within the
Extension-class, with the old NetworkObjectReference as the key, and the new
NetworkObjectReference as the value. This way we can always retrieve the latest
NetworkObjectReference for respawned objects. All commands need to use the
GetRespawnedReference method on their target NetworkObjectReference to make
sure they can find respawned target objects.

Delete The delete command is the inverse of the spawn command. Internally, the
delete command uses a spawn command. When executing the delete command, the
internal spawn command is undone, and when the delete command is undone, the
internal spawn command is executed.

3.6 Avatar and Personalization

Any collaborative VR environment needs an avatar to represent users within the system.
For this prototype, we have only added a floating head built from Unity’s integrated
Capsule shape, with eyes that are Spheres. The hand positions are represented by
floating VR controllers of the Meta Quest headset. Every user can set their user name
and a color through a custom menu within the Unity Editor to allow rudimentary
customization for their avatar.

24

4 Collaborative Industrial Augmented
Reality Implementation

This chapter describes the implementation and integration of real-time communication
capabilities using WebSockets into an existing industrial augmented reality system
at Siemens, called Hololayer. This enables collaborative features such as the ones
described in chapter 3 to be developed.

4.1 Hololayer

The main purpose of the Hololayer system is to provide a secure platform for creating,
visualizing, interacting with, and persisting geo-referenced augmented reality (AR)
content. The system allows users to create and edit holograms, which are digital
3D representations overlaying the real world, using a mobile app available on iOS,
Android, and Hololens devices. Hololayer supports collaboration and sharing of AR
content by structuring the world into Places, Layers, and Holograms, and by employing
localization and spatial persistence techniques. The system is designed to be extensible
and adaptable to various industrial and organizational use cases [2].
The Hololayer system is comprised of the following main components:

1. Hololayer server: Provides REST-based services for data storage, access, and
management, as well as security features like authentication and authorization.
It’s a cloud-hosted back-end that stores and manages data related to holograms,
places, and layers, and supports geo-spatial referencing and importing data from
other sources like BIM (Building Information Modeling) or 3D asset management
systems [2].

2. Mobile Hololayer AR client: Built with the Unity game engine and available on
iOS, Android, and Hololens, this app allows users to create, visualize, and interact
with holograms in the field. A modular architecture supports extensibility, easy
maintenance, and integration with different devices and platforms. In this thesis,
we add real-time collaboration to this client [2].

25

4 Collaborative Industrial Augmented Reality Implementation

3. Hololayer Web UI: A web app for administrative tasks and user-interface man-
agement, supporting responsive design for use on various devices [2].

4. Data model: Structures the world into Places, Layers, and Holograms, enabling
efficient organization, access, and collaboration on AR content [2].

5. Localization and spatial persistence: Combines GPS, image recognition, and
SLAM (Simultaneous Localization and Mapping) techniques to achieve location
accuracy, allowing holograms to be precisely positioned in the real world [2].

Hololayer is designed to address a variety of use cases across different contexts and
industries. Some of these use cases include:

1. Remote assistance and collaboration: Hololayer enables experts to guide on-site
personnel in real-time by overlaying holograms and visual instructions on the
physical environment. This helps in reducing downtime and increasing efficiency

[2].

2. Training and education: Hololayer can be used to create immersive training
scenarios, allowing workers to learn new tasks and procedures in a safe, virtual
environment [2].

3. Maintenance and repair: Hololayer can provide step-by-step instructions for
maintenance and repair tasks, overlaying relevant information on the physical
equipment, reducing errors and improving safety [2].

4. Planning and design: Hololayer can be used to validate and visualize plans in the
design phase, enabling stakeholders to check the fit and collision of 3D models
with the physical assets, and making adjustments as necessary [2].

4.1.1 Data Model

Holograms These are the virtual objects that users can create, visualize, and interact
with in the Hololayer system [2]. Holograms can be of various types, such as 3D
models, videos, images, or text. Metadata can be associated with holograms, including
severity (error/warning/info), textual comments, or editing history [2]. Holograms are
organized both logically and spatially to support efficient operations and wide-area
data access [2].

26

4 Collaborative Industrial Augmented Reality Implementation

Places Hololayer divides the world spatially into Places, which are usually around
10 meters in diameter, roughly the size of a typical room, but can vary in size [2]. A
Hologram belongs to exactly one Place. Each Place has a GPS-referenced geographic
location (latitude, longitude, altitude) and may have identifiers, such as a room number
or a relatively unique object, like a piano, to distinguish it from other nearby Places [2].
Each Place also has a human-readable name and a preview image [2].

Localization within a Place in the Hololayer system involves several techniques to
accurately determine the user’s position and orientation [2]. Initially, the app uses GPS
to get the user’s approximate position and queries the backend for nearby Places [2].
The user then takes a photograph of a unique object to refine the list of potential Places
[2].

Once the Place is identified, the app creates a SLAM (Simultaneous Localization
and Mapping) map using natively supported APIs, which is persisted in the backend
and associated with the Place [2]. This allows the app to recognize the position and
orientation of the mobile device with an accuracy of around 20 cm in most environments
[2].

In challenging environments, a Place may have Anchors with a position and an
identifier [2]. If the app cannot relocalize itself based on the SLAM map, the user can
point the phone at three or more anchors to re-localize accurately and update the SLAM
map on the server [2].

Layers The world is structured logically into Layers in Hololayer, which can be
displayed and edited individually. Each hologram belongs to exactly one Layer. Layers
are used to categorize and organize holograms based on their purpose or function.
Examples of Layers include "building maintenance," "electrical installation," or "tourist
information" [2].

4.1.2 Authorization

Access to Places and Layers is managed using a fine-grained access control mechanism
that assigns read, write, or admin access levels to each user for specific Places and Layers.
This authorization scheme ensures that information is accessible only to authorized
users, enabling them to create, edit, and visualize a given set of Holograms within the
designated Places and Layers, while maintaining secure access and data management

[2].

27

4 Collaborative Industrial Augmented Reality Implementation

4.1.3 Existing Approach to Data Updates

Places, layers and holograms are fetched from the Hololayer REST-API. This means
that clients that simultaneously modify holograms, do not immediately see changes
made by other users. Each time a user opens the list of places or layers, a request
to the REST-API is made to update the respective local data repository. Changes to
Holograms only become visible to other users when they reload all holograms from
the backend. While this already enables asynchronous collaboration between multiple
users, it is not an ideal solution, as users can not see changes immediately and can
not collaborate smoothly in real-time. One of the main goals of this thesis is to enable
real-time collaboration between multiple clients by facilitating the collaboration server
(see the following Section 4.2).

4.2 Collaboration Server

4.2.1 Overview

The Collaboration Server is a key-value store based on LevelDB!, designed for dis-
tributed applications and accessible via WebSockets. It is a prototypical industrial
approach to distributed computing that was implemented at Siemens prior to my
thesis. The purpose of the Collaboration Server is to allow real-time state updates
within the Hololayer system. Rather than using the Hololayer server’s REST-API to
fetch or modify data, clients now have the option to use the Collaboration Server’s
operations to modify the Hologram state. Once modified, the new state is automatically
distributed to all other active clients that are currently connected. It offers an API with
four streaming operations: sync (a database dump), put (adding or updating key-value
pairs), del (deleting key-value pairs), and batch (atomically committing multiple op-
erations), which allow clients to interact with the database. The server also handles
access control, only allowing users with read privileges to connect, or users with write
privileges to perform put or delete operations. A simple binary protocol to encode
operations on the key-value store, ensuring efficient communication between server
and clients. Server-side features include client ID generation for tracking, provenance
and ownership management, and automatic clean-up of client-related data upon dis-
connection. This server offers a foundation for building various distributed applications
while handling core functionalities related to the key-value store.

Thttps:/ / github.com/google/leveldb

28

4 Collaborative Industrial Augmented Reality Implementation

4.2.2 Collaboration Server Operations

The Collaboration Server supports four primary operations: sync, put, del, and batch.
These operations are accessible via WebSockets.

put Operation

The put operation is used to add or update a key-value pair in the database. It consists
of four parts:

1. The first byte encodes the message type (PUT).
2. The next four bytes encode the length of the key.
3. The following four bytes encode the length of the value.

4. The remaining bytes consist of the key and value byte arrays.

del Operation

The del operation is used to delete a key-value pair from the database based on a given
key. It consists of two parts:

1. The first byte encodes the message type (DEL).
2. The next four bytes encode the length of the key.

3. The remaining bytes represent the key byte array.

batch Operation

The batch operation allows multiple put and del operations to be committed atomically.
The structure of the message depends on the composition of the batched operations.
The message can be decoded recursively as follows:

1. The first byte encodes the message type (BATCH).

2. The next four bytes encode the number of operations in the batch.

3. Each subsequent operation is processed serially, decoding the payload based on
its respective message type (PUT or DEL).

29

4 Collaborative Industrial Augmented Reality Implementation

sync Operation

The sync operation is the first message a client receives upon connecting to the Col-
laboration Server. It sends a dump of the current contents of the database as a batch
message, allowing the client to synchronize its state with the server.

4.2.3 Storing Hologram State

As described above, the Collaboration Server is a key-value store. For storing Hologram
state, each Hologram property can be saved as one key-value pair. For example, the
position and rotation properties of a Hologram with the GUID "550e8400-e29b-11d4-
a716-446655440000" are stored in the keys

Holograms{0x00}550e8400-e29b-11d4-a716-446655440000{0x00}position and
Holograms{0x00}550e8400-e29b-11d4-a716-446655440000{0x00}rotation

respectively. A zero-byte {0x00} is used for seperating the relation name (Hologram),
Hologram GUID and property names (position and rotation). Clients can add or update
these key-value pairs by invoking put operations with the respective key and value over
a WebSocket connection to the Collaboration Server (see Section 4.2.2). This way;, all
modified Hologram properties can be stored, shared with other connected clients and
finally persisted. The keys and values stored in the in key-value store can be arbitrary
byte arrays, allowing one to serialize and store anything as a value.

4.2.4 Committing Hologram State

After changes have been made to one or more Holograms, the Collaboration Server
contains a range of key-value pairs that are due to be either persisted through the REST-
API backend, or discarded. Changes can be discarded by invoking delete operations
on the Collaboration Server. To persist state, a commit request can be sent to the
collaboration server. By default, the commit will persist all changes that are currently
available in the key-value store. Alternatively, the range specifiers "It" (less than) and
"gt" (greater than) can be included in the commit request, allowing selective commits
of the specified range of keys. For example, all states of a specific Hologram can be
committed by specifying

gt = Hologram{0x00}{hologramId}{0x002} and
It = Hologram{0x00}{hologramId}{0x01}

30

4 Collaborative Industrial Augmented Reality Implementation

as all of the Hologram'’s property keys will fall between gt and /t. The LevelDB key-
value store keeps its data sorted by key, allowing for fast iteration over all properties of
a specific Hologram in order to commit them.

4.2.5 Scaling and Partitioning

The Collaboration Server was built with the Place and Layer model of Hololayer in mind
and is part of a distributed system. At the time of writing this thesis, one instance of the
Collaboration Server is supposed to handle exactly one Place/Layer combination. In the
future, there may be one instance per Place that handles all Layers. Since Places already
spatially partition the Hololayer system into small chunks, one Collaboration Server
instance only has to handle a fairly small amount of connected clients, allowing the
whole Hololayer system to scale horizontally. After multiple Holograms within a Place
have been modified, those changes can be persisted at once through the Collaboration
Server. By caching changes to Holograms on the Collaboration Server instances rather
than immediately saving them through REST-API POST requests from each client, load
is reduced on the REST-API and distributed to the Collaboration server instances. A
reverse-proxy forwards connecting clients to the Collaboration Server instance for the
Place provided with the connection request. If no Collaboration Server is running for
the requested Place, a new instance can be spun up in the cloud before forwarding the
client connection.

4.2.6 Cloud vs Edge Node

An edge node, or edge server, is a server that for example is physically located at
the edge of a local area network. The Collaboration Server may be located on facility
grounds as an edge node, so clients can connect to it through the local area network,
allowing stable, low-latency connections. Since each Collaboration Server instance
handles the load of exactly one Place, physically moving the server to where the Place
is located is a reasonable choice, also allowing clients to stay connected to the local
server instance if internet access within the facility is restricted or unavailable. The
downside to edge servers is mostly cost, as physical servers need to be maintained
on-site. Alternatively, the Collaboration Server can also be deployed as a cloud service,
which increases latency but makes deployment hassle-free for any location that offers
stable internet access. During my thesis, the Collaboration Server was deployed on
AWS EC2 instances. The latency could barely be noticed as long as a stable internet
connection was available.

31

4 Collaborative Industrial Augmented Reality Implementation

4.2.7 Choice of Communication Protocol

WebSockets The Collaboration Server uses WebSockets to facilitate real-time commu-
nication between multi-platform clients and the server. Since WebSockets are based
on the TCP protocol, they are connection-based and ensure reliable, in-order data
transmission, which is usually required in Hololayer. WebSockets are designed for real-
time applications, making them suitable for transmitting transient data that requires
immediate synchronization between clients and the server. The need for compatibility
with web frontends and Unity clients make WebSockets a natural choice, as they are
widely supported in modern web browsers and various WebSocket client libraries for
other platforms, including .NET and Unity, exist.

On the other hand, there are some disadvantages to using WebSockets for transmit-
ting transient data. Rapidly changing data transmitted over WebSockets may cause
network congestion, particularly if many clients are sending and receiving data simul-
taneously. Handling numerous WebSocket connections with high-frequency updates
can become resource-intensive for the server, potentially affecting its ability to scale.
Additionally, transmitting large amounts of transient data in real-time can consume
significant bandwidth, which might be a concern for clients with limited network
resources. Lastly, WebSockets use the TCP protocol, which ensures reliable data trans-
mission. However, in scenarios where low latency is more critical than reliability, such
as real-time gaming, occasional data loss might be tolerable. In such cases, protocols
like UDP can be more suitable, as they prioritize low latency over guaranteed delivery.
Reliable data transmission may not always be necessary in Hololayer, but there is not
too much need for ultra-low-latency data transmissions and it is acceptable to also
transmit these over WebSockets (TCP).

Alternative: MQTT (Message Queuing Telemetry Transport) The Collaboration
Server, while being inspired by MQTT, has been designed to offer certain guarantees
that MQTT does not. Specifically, the Collaboration Server ensures an initial state dump
to newly connected clients, followed by state updates, which could be attempted with
MQTT by retaining all messages and subscribing to all topics on newly connected
clients. Also, the Collaboration Server is designed to be lightweight and deployable
across various platforms, such as local systems, edge nodes, and cloud services.

The MQTT protocol provides an approach utilizing a publish/subscribe (pub/sub)
pattern, which could have been used for the Collaboration Server. This pattern signifi-
cantly differs from the traditional client-server architecture by decoupling the client that
sends a message (the publisher) from the client or clients that receive the messages (the
subscribers) [13]. Instead of direct communication between clients, a third component
known as the broker is introduced to filter and distribute messages. This approach

32

4 Collaborative Industrial Augmented Reality Implementation

results in a decoupling in three dimensions: space, time, and synchronization [13].
In space decoupling, the publishers and subscribers do not need to know each other,
eliminating the need for exchange of IP address and port [13]. Time decoupling ensures
that the publisher and subscriber do not need to run at the same time [13]. Finally,
synchronization decoupling means that operations on both components do not need to
be interrupted during publishing or receiving [13].

One of the core benefits of the MQTT pub/sub model is its scalability, as operations
on the broker can be highly parallelized, and messages can be processed in an event-
driven manner [13]. The broker achieves message filtering through various options,
including subject-based, content-based, and type-based filtering [13]. This effective
filtering mechanism allows each subscriber to receive only the messages of interest
[13]. In case of the Collaboration Server, we are spatially partitioning the server already
and all connected clients are supposed to receive all messages from each Collaboration
Server, with few exceptions.

Originally designed for the communication of IoT devices MQTT was not built with
very high update rates in mind, but has been shown to work well for collaborative
augmented reality systems, as it comes with clustering capabilities [14]. In the work
by Pereira et. al, a single instance can quickly become CPU-bound at around 120
concurrent users, while running two instances of a pub-sub broker as a cluster on a
single machine caused a 1Gbit/s network to become congested at around 180 concurrent
users [14]. Note that they are streaming positions of each user with multiple key points
for facial expressions [14].

4.3 Implementation

The main Hololayer client is built using the Unity Game Engine. It’s a cross-platform
project targeting iOS and Android for handheld AR and Microsoft’s Hololens for
headmounted AR. The Unity project is built on software engineering principles from
"Clean Code", which generally allow for extendability and maintainability [2, 15].
Data repository classes are used for managing Hologram, Place and Layer data,
providing functionalities to fetch, create, modify or delete the respective data ob-
jects. The IHologramRepository interface defines the public API of repositories con-
taining Hologram data. The RESTApiHologramRepository, which implements the
IHologramRepository interface, provides methods to fetch, create, modify or delete
Holograms through the Hololayer backend’s REST-API. Since the THologramRepository
interface is used throughout the application to modify Holograms or to subscribe to
Hologram changes, I decided to add a CollabHologramRepository, which inherits
from the RestApiHologramRepository to fetch all Holograms available through the

33

4 Collaborative Industrial Augmented Reality Implementation

REST-API backend, but also publishes and receives state updates for Holograms in
real-time using the Collaboration Server. Since the majority of the Hololayer client
components are designed to react to changes in the data repositories, minimal ad-
ditional work is required, aside from providing updated Holograms through the
CollabHologramRepository.

4.3.1 UniRx, Subjects and Observables

This subsection provides an explanation of the UniRx library components and their
roles in the implementation of the Hololayer client. Unity Reactive Extensions (UniRx)
is a port of the Reactive Extensions (Rx) library for the Unity game engine [16]. Rx is
designed to create asynchronous and event-driven applications by utilizing observable
sequences and LINQ-style query operators. With Rx, developers can represent asyn-
chronous data streams through Observables, manipulate and query these streams using
LINQ operators, and manage concurrency within the streams by using Schedulers
[17]. UniRx was already used throughout the Unity Hololayer client, but is great for
networking implementations as well. The main components of UniRx that my net-
working implementation uses are I0bservable<T>, Subject<T>, BehaviourSubject<T>,
ReactiveProperty<T>and some of the operators like Buf fer, Sample, GroupBy, Merge,
Where and Select [16, 18]. Since Observables, Observers and Subjects are being used
heavily throughout the implementation, they are described below. Observables were
already used in the existing repository APIs to allow subscriptions to Place, Layer and
Hologram data.

Observable (I0bservable<T>) An Observable is a design pattern used in reactive
programming that represents a data stream, which can emit multiple values over time.
Observables enable the asynchronous processing of data and events by subscribing
to them using Observers. They provide an efficient and composable way to handle
asynchronous data flows, such as user interactions, network requests, or timer events.

In the UniRx library, an Observable is represented by the I0bservable<T> interface,
where T is the type of the data being emitted by the Observable. The I0bservable<T>
interface has a single method, Subscribe, which allows an Observer to subscribe to the
Observable.

public interface IObservable<out T>
{

IDisposable Subscribe(IObserver<T> observer) ;

34

4 Collaborative Industrial Augmented Reality Implementation

Observer (I0bserver<T>) An Observer is an object that subscribes to an Observable in
order to receive and react to the values, completion, or error notifications emitted by the
Observable. In UniRx, an Observer is typically implemented using the I0bserver<T>
interface, where T is the type of the data being emitted by the Observable. The
I0bserver<T> interface defines three methods that an Observer needs to implement:

public interface IObserver<in T>

{
void OnCompleted() ;
void OnError (Exception error);
void OnNext(T value);

}

OnNext(T value) is called by the Observable when it emits a new value. The Observer
can react to the value, for example, by updating the Ul, processing data, or triggering
some action.

OnError(Exception error) is called by the Observable when an error occurs during the
data emission process. The Observer can handle the error, for example, by logging the
error message or displaying an error notification to the user.

OnCompleted() is called by the Observable when it has finished emitting values and
no further values will be emitted. The Observer can perform any necessary cleanup or
finalization tasks upon receiving this notification.

Subject (ISubject<T>) A Subject is a special type of Observable that can also act as
an Observer [18]. It’s a hybrid object that allows you to both emit and receive values in
a reactive stream. In UniRx, instances of the Subject<T> class can be subscribed to by
Observers and items of type T can be emitted by calling the OnNext (T) method of the
subject.

public interface ISubject<T> : IObserver<T>, IObservable<T>
{
b

4.3.2 Collaboration Components
This section describes the various classes and components I developed to enable real-

time collaboration within the Hololayer client.

CollabKey The CollabKey class corresponds to a key stored on the Collaboration
Server (see Section 4.2.3). It is a simple wrapper around the binary keys transmitted

35

4 Collaborative Industrial Augmented Reality Implementation

by the collaboration server, which allows you to directly access the key’s Relation and
Name segments. In case of a Hologram, the HologramCollabKey, which inherits from
CollabKey, splits the Name into Hologramld and PropertyName. For example, the key

Holograms{0x00}550e8400-e29b-11d4-a716-446655440000{0x00}position

is split into the following three parts:

Relation = ”"Hologram”,
Hologmmld = ”550e8400-e29b-11d4-a716-446655440000",

PropertyName = " position”

When sending an operation to the collaboration server, the CollabKey needs to be
converted to a byte array, which can be done using its AsByteArray () : byte[] function.

CollabPropertyMessage A CollabPropertyMessage references the CollabKey for
which property it received the message, and the property value itself as a byte
array. All websocket transmissions containing key-value pairs are transformed to
CollabPropertyMessage, which on their own do not know the type of value they
contain.

CollabPropertyRepository This class is responsible for synchronizing and managing
the collection of properties stored as key-value pairs on the Collaboration Server. It
takes care of registering and deregistering properties, handling property changes, and
managing the communication of property updates between clients. It is also responsible
for managing the connection state and handling incoming and outgoing messages,
parsing them into CollabPropertyMessage instances.

CollabProperty<T> This generic class represents a collaborative property, which can
hold any type of data for which an ICollabBufferReaderWriter<T> has been registered
before (e.g., int, string, Vector3 or custom classes). See section 4.3.4 on serialization. It
synchronizes the state of exactly one key-value pair on the Collaboration Server, which
is identified by a CollabKey property. It inherits from UniRx" ReactiveProperty<T>
to maintain a reactive state, allowing observers to react to changes in the property
value. The class also handles remote changes to the property value by subscribing
to the property messages provided by the CollabPropertyRepository. Local changes
to the property also automatically sent to the CollabPropertyRepository in order for
them to be synchronized with the Collaboration Server and thus other clients. A
CollabProperty<T> instance is typically initialized using the corresponding persisted

36

4 Collaborative Industrial Augmented Reality Implementation

state of the property, as provided by the Hololayer REST-API. This is the case for
all Hologram properties, as described in the CollabHologram paragraph below. Col-
labProperty instances can also be used to synchronize any other key-value pair on the
Collaboration Server. The general idea for the CollabProperty<T> class came from
Unity’s Netcode for GameObjects [10]. Netcode has a NetworkVariable<T> class that
enables synchronization of object properties between multiple clients [10].

CollabHologram This class represents a Hologram that utilizes CollabProperty<T> in-
stances to store and synchronize its properties, such as position, rotation, and scale, with
other clients and the Collaboration Server. Every time a Hologram property changes,
the CollabHologram in turn emits a new version of a Hologram, as the CollabHologram
provides an I0bservable<Hologram> stream.

CollabHologramRepository The CollabHologramRepository allows other parts of
the application to fetch, create, modify and delete Holograms. For every Hologram
available, it creates an instance of CollabHologram, which in turn can receive remote
changes to the Hologram and push local Hologram changes to the Collaboration Server.
Since the CollabHologramRepository implements the IHologramRepository interface,
which has a PersistHologramChanges(...) method for persisting local Hologram modi-
fications, this method can be used to send local changes to the Collaboration Server,
instead of persisting them using the Hololayer server REST-API.

4.3.3 State Synchronization

In order to synchronize state of Holograms with the Collaboration Server, each Holo-
gram’s property is synchronized with the corresponding key-value pair on the Collab-
oration Server. The keys on the Collaboration Server are structured as described in
Section 4.2.3. As the Hololayer Unity project makes heavy use of UniRx, we decided to
handle the WebSocket messages with UniRx as well. UniRx is a great fit for handling
network streams, as they are basically observable sequences, which UniRx is built to
handle.

The incoming WebSocket stream of Collaboration Server operations (see Section
4.2.2) is parsed so that the different operations can be handled. They always con-
tain the key which identifies the property transmitted, so the operations are grouped
by the key using the UniRx GroupBy operator. The resulting Observable outputs
a stream of GroupedObservable<CollabKey, ICollabPropertyMessage>, where each
GroupedObservable corresponds to the stream of updates for one key-value pair on
the Collaboration Server. As a result, each key-value pair on the Collaboration
Server has a corresponding UniRx Observable. These Observables are stored in a

37

4 Collaborative Industrial Augmented Reality Implementation

Dictionary<string, IObservable<CollabPropertyMessage>>, mapping keys to Ob-
servable message streams for each key.

4.3.4 Serialization of CollabProperty<T> Values

The serialization is based on Google Protocol Buffers (Protobuf) [19]. Protocol Buffers
represent a flexible and efficient serialization format, designed to handle structured
data across various programming languages and platforms. They are extensively used
at Google for a range of purposes, including inter-server communications and persistent
data storage. Data structures are defined using .proto files, which allow for the seamless
serialization and deserialization of data [19].

The Protobuf compiler automatically generates code in multiple programming lan-
guages, facilitating convenient manipulation of the corresponding protocol buffer. This
code generation provides simple accessors, as well as serialization and parsing methods
for developers. Notably, Protocol Buffers support seamless changes, enabling the addi-
tion or removal of fields without negatively impacting existing services or necessitating
code updates [19]. I based my choice of serialization format and Protobuf message
definitions on the work by Sandro et al., who discuss several options for serialization
[9].

Central to the serialization of CollabProperty<T> values is the
CollabBufferReaderWriterLocator class, which serves as a registry for associ-
ating the generic data types with their corresponding reader-writer class. The
CollabProperty<T> class automatically serializes its value of type T using the
appropriate serializer, which it can find using the CollabBufferReaderWriterLocator
class. The serializers are classes that implement the ICollabBufferReaderWriter<T>
interface, which defines a void Read(byte[] buffer) method for deserialization of a
byte array into the target type and the corresponding byte[] Write(T value) method
for serializing values from the target type into a byte array.

Each ICollabBufferReaderWriter<T> implementation will use the corresponding
generated Protobuf code for serialization. There can be types that do not use a
Protobulf serialization, as each ICollabBufferReaderWriter<T> implementation can use
a different way of serializing values. For example, the string, Vector3, and Quaternion
types still use a legacy serialization method that was used before the start of my thesis.

An overview of the classes and interfaces involved in the serialization process can be
seen in the class diagram in Figure 4.2.

38

4 Collaborative Industrial Augmented Reality Implementation

Collaboration
Server

'y
WebSocket communication
A 4

Hololayer WebSocket Client

Raw binary messages

CollabPropertyRepository
parses incoming messages

Parsed messages
A

Observables for each key-
value pair on the
Collaboration Server

Subscriptions to specific
key-value pairs

— .

CollabProperty<T> CollabProperty<T> CollabProperty<T>

Subscription to
parsed values as

properties of type T

CollabHologram

Hologram

Subscription to CollabHologram updates

CollabHologramRepository

Access/Subscription to HOW\

User Interface Other Components

Figure 4.1: Data flow of incoming messages that are parsed into their key-value pairs
and emitted in Observables for each key. CollabProperties inside Collab-
Hologram instances subscribe to specific key-value pairs, like for example
the position key ("Hologram{0x00}{HologramId}{0x00}position") and modify
their internal Hologram instances that in turn are subscribed to by the Col-
labHologramRepository, which is keeping a collection of CollabHolograms.
Other components can then access Hologram data through the CollabHolo-
gramRepository.

39

4 Collaborative Industrial Augmented Reality Implementation

»

(CollabPropertyMessage
Class

4 Properties

/’ Source { get; } : UpdateSource

A ValueBuffer { get;) : bytell
4 Methods

0 CollabPropertyMessage(CollabKey key, byte[] valueBuffer, UpdateSource...
D GetAs<T>():T

 CollabKey A (CollabProperty<T> A
Class Generic Class
r - ReactiveProperty<CollabPropertyUpdate<T=>
4 Properties .
4 Properties
_}’ Name { get; } : string G
/A Relation { get; } : string & Value {getset;}: T
4 Methods o e
@ AsByteArray() : byte(] ?ﬂ OnNextCollabPropertyMessage(ICollabPropertyMessage message) : void
B SendUpdates() : void

| CollabBufferReaderWriterLocator A [ICollabBufferReaderWriter<T:> A
Class Generic Interface
7
4 Methods 4 Methods
T CollabBufferReaderWriterLocator() &1 Read(byte]] buffer) : T
) GetParser<T>() : ICollabBufferReaderWriter<T>) Write(T value) : bytef]
(StringReaderWriter ¥ | Vector3ReaderWriter ¥ [UserReaderWriter ¥
Class Class Class
\ \

Figure 4.2: Class diagram showing classes and interfaces involved in the serialization
of value buffers received and sent to the Collaboration Server. The three
implementations of the ICollabBufferReaderWriter<T> interface are just
examples and various other implementations for other types exist.

40

4 Collaborative Industrial Augmented Reality Implementation

4.3.5 Performance Considerations
Handling Incoming Messages

The messages for a specific key-value pair need to be made available to client
code in an efficient manner, as there might be hundreds to thousands of key-value
pairs. Section 4.3.3 described that incoming messages are grouped by their key
using the UniRx GroupBy operator. Internally, the GroupBy operator contains a
Dictionary<string, ISubject<CollabPropertyMessage>>, which maps each key to
an observable that publishes a stream of messages for exactly one key [16]. That
means, for each message that is received, the GroupBy operator does a lookup in
the map/dictionary of subjects to which it then publishes the message. Since the C#
Dictionary is implemented as a hash table, retrieving a Subject/Observable by using
its key is very fast, close to O(1) [20]. The exact performance impact of the Dictionary
depends on the hashing algorithm being used on the string keys [20]. String hashing
algorithms usually need to iterate over the length of the string, making them O(n) in
time complexity with respect to the length of the key. Other parts of the application can
subscribe to these subjects. The number of subscribers to each subject does not affect
the overall performance of receiving messages and routing them to the appropriate
observable.

Handling Outgoing Messages

The rate at which messages are sent to the Collaboration Server may be limited
arbitrarily. Since the Collaboration Server’s batch operation type supports sending and
receiving multiple put and del messages/operations at once, it makes sense to buffer
messages for at least a short amount of time, before sending them (see Section 4.2.2
for details on batch and and other supported operations). This can be achieved easily
using the UniRx Buffer operator on the outgoing stream of messages (see Listing 4.1).
The Buffer operator transforms an Observable that emits items into an Observable that
emits buffered collections of those items [17]. It takes an Observable or TimeSpan as an
argument, which indicates how long emitted items of the source Observable should
be buffered. The CollabPropertyRepository buffers outgoing messages until every
LateUpdate, meaning until all Update functions have run. This makes sure messages
are sent with little delay but still allows them to be batched.

41

4 Collaborative Industrial Augmented Reality Implementation

I OutgoingMessages

2 .Buffer (Observable.EveryLateUpdate())
.Where(ops => ops.Count > 0)

4 .Select(ops => ops.Select(CreateNetworkBufferFromCollabPropertyMessage))
.Subscribe (SendMessages) ;

Listing 4.1: Buffer outgoing messages until every LateUpdate and transform them into
byte arrays before sending them.

Additionally, the CollabProperty<T> class also does not send changes into the
outgoing message stream immediately, since when for example the position and
rotation of an object is modified every frame, which is the case when it is being moved,
this could cause too many messages to be sent. The CollabProperty<T> class employs
the Sample operator to limit the update transmission rate to a maximum of 20 Hz.

Filtering for Keys

Exact Key In case of Holograms, the exact key for each Hologram property is known
on each client, as they are hard-coded into the CollabHologram class. Here, the Observ-
able that provides state updates for a specific CollabKey can be obtained by using the
I0bservable<ICollabPropertyMessage> GetPropertyObservable(CollabKey key)
method of the CollabPropertyRepository, and the value of the message can be
parsed using the ICollabPropertyMessage.GetAs<T>() method. Alternatively, a
CollabProperty<T> instance can be used to automatically synchronize a specific
key-value pair and also write values to the key-value store.

Multiple Keys For other use-cases, the local client might want to sub-
scribe to multiple key-value pairs on the Collaboration Server at once.
For this wuse-case, the WatchCollabPropertyMessagesWithFilterTask and
WatchCollabPropertyMessagesWithRegExTask allow to watch for messages that
match a certain filter function - a Regular Expression in case of the second class. E.g.
by using the WatchCollabPropertyMessagesWithRegExTask class with the regular
expression "~Hologram\0", the corresponding code can subscribe to all key-value
pair updates of Holograms. Each key available through the Collaboration Server
will only be checked against the filter function once, not for every message received.
The WatchCollabPropertyMessagesWithFilterTask will filter the Observables that
become available and subscribe to the ones that match its filter.

42

4 Collaborative Industrial Augmented Reality Implementation

Emitting new Hologram Versions

Every time a Hologram property is updated through the CollabHologram a new
Hologram version is emitted. This however also means that while a Hologram is
moved, a new Hologram version is registered in the CollabHologramRepository. This
is a necessity to the approach of providing real-time updates through the existing
IHologramRepository interface, but may be considered rather inefficient, as new Holo-
gram objects are created for changes in just one property. This happens at rates of up
to 20 Hz when Holograms are moved, i.e. their position and rotation properties are
updated. It would be possible to mitigate this by rate-limiting newly emitted Hologram
versions, but since we want Hologram transforms to update at 10-20 Hz, i.e. at the
rates they received updates via the Collaboration Server, additional code would need
to be written to update the visual components at those rates.

4.3.6 Collaborative Features

With real-time synchronization of key-value pairs from the Collaboration Server inte-
grated into Hololayer, many collaborative features could now be implemented. For this
thesis, the main goal was to update Hologram data in real-time.

Editing and Placing Holograms

Holograms could already be moved and placed through the Hololayer app, but in order
to see these changes on other devices all Holograms had to be reloaded through the
REST-API. Now, Holograms can be moved through the Hololayer mobile app while
all connected clients see these changes in real-time. A newly created Hologram is
also loaded on other clients without the need to refresh all Holograms. All Hologram
properties can be changed and are transmitted through the collaboration server. One
exception persists though, which is Hologram content. The content of a Hologram is a
separate arbitrary data buffer, that can contain Hologram-specific data. E.g. an image
for a Photo Hologram, or an audio file for an Audio Hologram. Since the Hologram
content can be of considerable size, it is not part of the Hologram data structure. While
possible, transmitting Hologram content through WebSockets may also quickly cause
network congestion. Additionally, the Hololayer client does not support reacting to
changes in Hologram content as of yet. Although every Hologram type would need
to be able to respond to updated content, Hologram-specific implementations fall
outside the scope of this thesis. To support updating Hologram content in real-time, the
Hololayer client would need to be refactored, but most of the existing code for loading
and parsing the Hologram-specific content could be re-used, just in a different place.

43

4 Collaborative Industrial Augmented Reality Implementation

Enable Collaboration @)

Connections
Felix' Place
Felix' Thesis Connected
Active Users
felix.neumeyer.ext@siemens.com
Changed Holograms

Mountain View

A\ vgr‘ﬁ L C°""‘f"tChahges g

Figure 4.3: Collaboration =~ menu

added to the Hololayer
iOS and Android
clients.

Active Users List

As a demonstration of the client network-
ing solution proposed in this thesis, the
CollabConnectedUserRepository has been imple-
mented. It keeps track of all currently connected
clients on all Collaboration Servers the local Holo-
layer client is currently connected to. It listens
for CollabPropertyMessages with CollabKeys
that match a regular expression by using the
WatchCollabPropertyMessagesWithRegExTask
and publishes the local user on all con-
nected Collaboration Servers by using one
CollabProperty<User> instance for each server.
The list of active users can be found in the
Hololayer app’s collaboration menu (see Figure
4.3).

Committing Changes

Changes to Holograms are not persisted immedi-
ately, when they are made. They are sent to the
Collaboration Server, where they are cached. The
Holograms that have been modified are listed in
the Collaboration menu, allowing all connected
users to review them. A commit request can then
be sent to the Collaboration Server in order to
persist the changes made to modified Holograms
through the collaboration menu (see Figure 4.3).

44

5 Evaluation

5.1 Collaborative Spatial Design User Study

A user study with 12 expert users was conducted following a two-step process, aimed
at gathering ideas and opinions on features for a VR-based spatial design application.
The study’s primary objective was to evaluate the potential usefulness of each tool
developed for the VR prototype and to collect user suggestions for additional features.
The study’s focus was not on UI/UX aspects, but rather on the general potential impact
of each feature within a collaborative spatial design context.

The first step of the user study required participants to generate feature ideas
independently. This phase was designed to stimulate creative thinking and to avoid
biasing participants towards the features already implemented in the prototype. By
asking for their input before demonstrating the prototype, we aimed to capture a broad
range of ideas based on the participants” experiences and understanding of design
processes, which could potentially bring new perspectives and considerations to the
development of a VR-based spatial design application.

After participants had brainstormed their own feature ideas, we then transitioned to
the second phase of the study. In this phase, participants were shown demonstration
videos of the prototype’s features. The goal of this demonstration was to give partici-
pants a concrete understanding of the prototype’s capabilities and to provide a basis
for further discussion and feedback.

Participants were asked to evaluate the usefulness of each demonstrated feature and
to provide suggestions for improving or expanding the application. This feedback
helped us understand not only the perceived usefulness of the features but also potential
shortcomings, areas of improvement, and new feature ideas inspired by the prototype.
The user study questions can be found in the Appendix.

5.1.1 Participants

The user study was conducted among a diverse group of participants, both in terms
of age, gender, and professional background. The participants” ages ranged from 23
to 55 years old, with a median age of 26 years. The gender distribution included
7 males and 5 females, providing a reasonably balanced gender perspective on the

45

5 Ewvaluation

research questions. About half of the participants were employees at Siemens and
work on the Hololayer AR system. The other half were either recent graduates, or
current students of the Informatics: Games Engineering Master’s degree program at
the Technical University of Munich.

The occupations of the participants who specified them were diverse, including Unity
Developers, an Al Engineer, a Full-Stack Developer, an Engineer, and a PhD Candidate
/ Digital enterprise expert.

Participants had experience developing on a variety of platforms, including PC,
Mobile, Augmented Reality (both head-mounted and hand-held), and Virtual Reality.
Some also had experience with console development. Except for one participant, all
had experience with either AR or VR.

Most participants were very to extremely familiar with VR technology. The remaining
participants indicated a moderate familiarity. The participants” experience with VR
applications varied from less than 10 hours to more than 500 hours. Most participants
had between 50 and 500 hours of experience.

Out of the 12 participants, 8 had used collaborative or design-related VR applications
before, while 4 had not. This suggests a reasonable level of familiarity with the types of
applications under consideration in the study.

Their professional or academic backgrounds make them expert users with a high
degree of credibility with regards to the questions of this user study.

5.1.2 Use-Case and Feature Brainstorming

The participants came up with a large, diverse number of feature ideas. By grouping
similar ideas into categories, we found common feature-sets that seem to be important
to collaborative environments. The ideas were not the same for each category, but
similar enough to be considered as a common set of functionalities. Since participants
rated the importance of their ideas, we can give average importance ratings for each
category, however, due to the small sample sizes, they are of little significance.

Real-time Communication and Chat Real-time communication was one of the most
frequently mentioned features, receiving the highest average importance rating of 4.57
by seven people. Participants advocated for the inclusion of chat, voice, and emoji
functions to facilitate more engaging and dynamic interactions. The integration of
both proximity and global chat rooms was also suggested to accommodate different
communication needs, including the need to mute other users. Overall I would agree
that especially proximity chat would be a very important feature if multiple groups
of designers are working in different locations of the virtual environment. It would
remove the need to join a separate voice call and seamlessly allow users to join other

46

5 Ewvaluation

groups’ conversations by simply teleporting to them. I had included voice chat in my
own user stories as well with a maximum importance rating of 5.

Annotations and Feedback With an average importance rating of 3.71, the ability
to leave notes, comments, and feedback on objects or designs was another desired
feature mentioned by seven people. Participants saw value in the use of annotations
for clarifying design intentions, providing constructive criticism, and facilitating asyn-
chronous communication. Annotations also include 3D drawings, as implemented in
the prototype (see Section 3.4.4).

Change Tracking and Version Control The ability to track and visualize user actions
over time was a feature suggested by four participants. With an average importance
rating of 3.75, it was deemed relatively crucial for effective collaboration. This capability
would facilitate the review of changes made to a scene or design, contributing to a
more transparent and accountable collaboration process. This also includes Undo/Redo
capabilities as implemented and described in my prototype (see Section 3.5).

Change Proposals and Approval Slightly different from change tracking, or poten-
tially built on top of it, was a feature suggested by three participants. They all mention
making suggestions for changes that can be approved by others and give it an aver-
age importance rating of 3.67. Suggestions may be highlighted visually in the scene.
Changes could be viewed, improved and voted on by others.

Access Control and Permissions Access control and permission management was
mentioned by three participants and received an average importance rating of 4.33,
highlighting its significance in maintaining the integrity of user contributions. Partic-
ipants expressed a desire to secure their work from inadvertent or intentional modi-
fications by others, emphasizing the need for robust access control mechanisms in a
collaborative environment.

User Location and Movement Knowledge of other users’ locations and the ability
to move freely within the virtual environment were also deemed important, with an
average importance rating of 3.67. Features such as minimaps, teleportation to key
places or collaborators, and tracking of user movements were suggested to enhance
spatial awareness and interaction.

Asset Sharing and Importing The ability to share and import 3D assets was another
popular feature set mentioned by four participants, with an average importance rating

47

5 Ewvaluation

of 4.5. Participants proposed a common asset database for environments and the ability
to upload reference images or other resources, indicating a need for versatile asset
management capabilities.

Private Workspace or Private Mode Finally, the concept of a private workspace or
mode was mentioned, albeit only by two people. Receiving an average importance
rating of 3, this feature would allow users to experiment with designs privately before
sharing them with the team. One user said he would for example like to turn lights
on/off in the scene without bothering other users.

3D Drawing Participants identified the need for sketching and planning tools, allow-
ing them to draw in 3D, or on a virtual whiteboard.

5.1.3 Virtual Reality Prototype Feature Feedback

After gathering the participants” own ideas, they were shown the features implemented
in the prototype as video descriptions. For each feature, they were asked to rate the
importance from 1 (Least important) to 5 (Most important), in the same way they rated
their own ideas. Since the feature videos show use-cases and explain the reasoning
behind the implementation, participants may have rated the prototype features as more
important than their own ideas.

Asset Palettes

Study participants rated the of the asset palettes with an average of 4.6. This shows
that most participants see this feature as highly important for their work in this
environment. The participants generally see the 3D Annotation Pen as a valuable
tool for communicating and sharing ideas, creating placeholder drawings, and leaving
notes or reminders within the environment. It was also mentioned that this tool can
potentially make collaboration more efficient and enhance the level of detail in a design.

The participants generally see the Asset Palette as a crucial feature due to its function
as a way to select and place assets, which is a core task in any spatial design application.
They also highlight the convenience of the recently used functionality, the intuitive user
interface, and the ability to quickly add objects to the scene as reasons for their ratings.

All participants indicate that they would use the Asset Palette feature, and they
appreciate its intuitiveness, speed, and how it organizes assets. Some see potential
for speeding up their design process and appreciate the ability to manipulate objects’
positions and sizes directly in VR.

Suggestions for improving this feature include:

48

5 Ewvaluation

¢ Implementing a search or filter functionality for easier navigation through assets.
¢ Enabling physics simulation for asset placement.

¢ Adding a multi-selection feature to facilitate bulk actions like duplicating multiple
objects.

¢ Adding 3D previews for each asset.

¢ Providing an option for automatic alignment/placement at the hitpoint of the ray.
¢ Including a favorites section or bookmarks for assets.

¢ Incorporating a toggle for the menu’s automatic re-opening after asset placement.

¢ Allowing the option for physics-based placement (optional, to allow for creative
placement as well).

Overall, the feedback for the Asset Palette feature is very positive, with participants
acknowledging its importance in the spatial design process and providing valuable
suggestions for further enhancement.

3D Annotation Pen

The average importance rating for the 3D Annotation Pen feature, based on the scores
given by your study participants, is 4.18 (out of 5). This indicates that most participants
view this feature as significantly important for their work in the virtual environment.

Participants regard the 3D Annotation Pen as a valuable tool for expressing ideas
in a more visual and intuitive manner, especially in a collaborative setting. They find
it beneficial for quick prototyping, highlighting parts of the environment, or leaving
notes for others. However, some participants noted that while the tool is useful, there
might be more efficient alternatives for certain tasks (e.g., using text notes or directly
using assets).

Participants expressed enthusiasm about using the 3D Annotation Pen. They appre-
ciate its potential for enhancing communication within the VR space, as well as the
creative freedom it offers.

Participants provided several suggestions for enhancing this feature, which include:

¢ Adding colour options including transparency, brush sizes, and brush types.
* Incorporating an eraser.

¢ Enabling users to draw certain shapes and straight lines.

49

5 Ewvaluation

Making drawings temporary or allowing for their bulk deletion.

Scaling the world or the player for more detailed drawings or quick coverage of
large areas.

Implementing text detection to convert handwritten notes into digital text.

Adding a ruler tool to draw straight lines

A toggle button for drawing in fixed depth, so that you can sketch in 2D.

In conclusion, the 3D Annotation Pen is seen as an important and useful tool in
the VR environment, with potential improvements suggested for further enhancing its
utility and user experience.

Collaborative Undo/Redo

The average importance rating given by the participants for the Collaborative Un-
do/Redo feature is 4.8 (out of 5). This indicates a general consensus among participants
that this feature is fundamental to a smooth and efficient user experience. Participants
highlighted the Undo/Redo feature as a necessary component of any software, as it
allows for the correction of errors and facilitates experimentation. They particularly
emphasized the need for this feature in a collaborative VR setting, where changes
might inadvertently affect others” work. Most participants expressed a strong interest in
utilizing the Undo/Redo feature, recognizing its importance in reversing mistakes and
exploring design ideas. However, they also noted potential complexity in understanding
the effect of the "redo" action in a view-based Undo/Redo system.
Participants provided the following suggestions on how to improve this feature:

¢ Implementing a mode selection for different Undo/Redo methods (as also pro-
posed by me).

¢ Displaying what will be undone prior to executing the undo action, for better
understanding of the implications.

¢ Showing a preview (ghost object) of the undo position when hovering over the
undo button.

¢ Assigning Undo/Redo permissions based on user roles, with approval required
for changes made to others” objects.

¢ Visualizing active work regions or allowing object selection before offering undo
possibilities.

50

5 Ewvaluation

¢ Providing a list of possible undo items for selection.

¢ Adding a confirmation or animation for the undo action.

To summarize, the Collaborative Undo/Redo feature is seen as critical by the partic-
ipants, with potential enhancements suggested to improve user understanding and
control over the undo/redo actions. Many of the suggestions are things I have consid-
ered as future work myself.

Teleportation

The average importance rating for the Finding Users/Teleportation feature is 4.1 (out of
5). This indicates that most participants view this feature as highly valuable, particularly
in scenarios involving large virtual environments or collaboration. Participants deemed
the teleportation feature necessary for quickly moving across large virtual spaces,
finding collaborators, and maintaining social and professional distances. They noted
its importance varies depending on the size and complexity of the scene. While some
participants expressed enthusiasm for the teleportation feature due to its potential to
save time and facilitate collaboration, others expressed reservations, mainly due to
potential disorientation after teleporting.
Participants recommended the following improvements:

¢ Implementing a teleportation preview or undo feature to prevent accidental
teleportation to the wrong person.

¢ Adjusting the teleportation mechanism to ensure that a teleported user appears
within the field of view of the user they teleport to, but not in a blocking position.

¢ Introducing a map-based solution for visualizing other users’ positions relative to
one’s own and the whole environment.

* Providing a notification to the user being teleported to, to prevent confusion or
startlement.

¢ Implementing a shader to highlight other users through objects.
¢ Making usernames visible through walls and allowing users to fly through objects.

¢ Allowing users to choose to teleport above another player, so that they are not
startled.

In conclusion, the Finding Users/Teleportation feature is considered important
by the majority of participants, particularly for large-scale or collaborative virtual
scenarios. Suggestions for improvement focus mainly on enhancing user orientation
and awareness during and after teleportation.

51

5 Ewvaluation

Laser Pointer

The average importance rating for the Laser Pointer feature is 4.08 (out of 5). This
indicates that participants view this feature as highly beneficial, particularly for com-
munication and measurement in the virtual environment. Participants noted that the
Laser Pointer feature is important for pointing and measuring distances in the virtual
environment. It serves as an alternative to physical gestures and is particularly useful
for highlighting specific locations or objects to other users. Most participants expressed
a willingness to use the Laser Pointer feature due to its utility for communication and
distance measurement. Some participants also pointed out its usefulness for adhering
to spatial constraints in certain tasks.
Participants suggested the following improvements:

¢ Adding additional functionality such as measuring tape between specified points.
¢ Allow switching between modes for pointing and measuring.
¢ Including a toggle to show/hide the distance measurement.

¢ Enhancing the pointer’s visibility with a dot at the end and changing its color
upon hitting an object.

¢ Integrating the Laser Pointer feature with a line drawing tool for temporary
scribbles in the air.

¢ Allowing users to set start and end points for measurements.
¢ Highlighting the object being pointed at.

In conclusion, the Laser Pointer feature is highly valued by the majority of par-
ticipants, especially for its dual functionality in pointing and distance measurement.
Suggested improvements mainly focus on enhancing visibility, user control, and flexi-
bility in the feature’s use.

5.1.4 Using Collaborative VR for Spatial Design Tasks

Regarding the research question whether the participants would want to use a VR-
based collaborative spatial design tool like the prototype I developed, 11 out of the
12 participants answered that they would, given further improvements and a more
comprehensive feature set. The reasons given varied, but common themes included
the potential for improved collaboration, the intuitive nature of VR, and the possibility
of more efficient and effective design processes. One participant expressed doubt,
preferring a mouse and keyboard for speed, since he is very used to these input

52

5 Ewvaluation

modalities using the Unity Editor. Another participant’s response was conditional,
suggesting that the usefulness of such a tool depends on the specific project.

One of the main reasons participants want to use such a tool is the potential for
improved collaboration. Participants believe that a VR-based design tool can facilitate
effective communication and teamwork, especially in 3D design projects. The real-time
collaboration features can help teams coordinate their work more efficiently, reducing
misunderstandings and saving time.

Participants also appreciate the immersive experience offered by VR technology.
They feel that being able to interact with the 3D design in a virtual space can provide a
better understanding of the spatial properties of the design. This is especially important
for fields like architecture and interior design, where spatial perception is crucial.

VR technology can provide more intuitive interaction methods compared to tra-
ditional design software. Participants believe that the ability to manipulate objects
in a 3D space in a natural and intuitive way can enhance the design process. This is
particularly beneficial for brainstorming and visualizing ideas in the early stages of a
design project.

Some participants see the VR-based design tool as a complementary tool to tradi-
tional design processes. They think that the tool could be used for specific tasks, such
as viewing and interacting with the design in a 3D space, while traditional design
software could be used for tasks requiring precise control or fast placement of objects.

Participants also mentioned that using a VR-based design tool can be fun and
engaging. The immersive nature of VR can make the design process more enjoyable,
which can boost creativity and motivation. This is especially relevant for game design,
where creativity plays a major role.

When analyzing the importance rating of each feature given by the users, there may
is a correlation with their hours of VR experience. Eight participants, who have more
than 50 hours of VR experience, tend to give higher importance ratings for most of the
features. It is particularly noticeable that they consistently rate the Asset Palette, 3D
Annotation Pen, Collaborative Undo/redo, and Finding Users/Teleportation features
as highly important (4 or 5).

The other four participants, who have less than 50 hours of VR experience, gave
mixed ratings. One participant rated the Finding Users/Teleportation feature as very
important (4), but gave a lower rating (3) for the Asset Palette. Another participant
gave high ratings for the Asset Palette and Finding Users/Teleportation features (both
5), but gave only a 3 for the Laser Pointer. A different participant rated the Finding
Users/Teleportation feature as less important (3) while giving high ratings to the other
features (all 5). Another participant rated all features as highly important except for
the Laser Pointer.

This data suggests that users with more VR experience generally recognize the

53

5 Ewvaluation

importance of these features more than those with less experience. Users with more
experience in VR may be a bit biased towards using VR-based tools. It's worth noting
that this is a small sample size, so these observations should be considered preliminary.
More data would be needed to confirm these trends.

5.1.5 Limitations and Problems

Persistence With the prototype, its currently not possible to persist changes in a
useful way. We have tried adding an existing Unity package for saving Play Mode
changes, but it did not work with every object or unlinked the placed objects from their
corresponding prefabs, making all objects placed or modified within a scene become
harder to manage. Since persisting the changes from Unity’s Play Mode is another
completely separate problem, there was no time to investigate further. For the purpose
of the prototype - finding and testing important features for collaborative spatial design
- it was not necessary to fix it, but for a real application it is indispensable.

User Study Participants While we had a diverse set of participants ranging from
very experienced full-time employees at Siemens to Games Engineering students in
pursuit of their Master’s degree, with a sample size of only 12, the generalizability of
the study’s findings is limited. All participants either had a lot of experience with VR
or with computer games. The user study was designed to target experienced or expert
users with regards to VR, in order for them to be able to comment on the importance
of each feature and the usability of collaborative VR in spatial design tasks, but that
also means that they may be biased towards using a VR-based tool. Additionally, all
study participants know me. Some are colleagues, others are friends. Therefore their
feedback could be more positive than that of strangers.

Prototype Videos The videos demonstrating the prototype features explained every
feature in detail with use-cases and additional information about usability consider-
ations. User study participants may have rated the features of the prototype more
favorably since they were presented in a positive manner. If users had actually tried the
prototype themselves without detailed explanations, the feedback may have been more
mixed. Still, since we did not want to evaluate the UX or UI of the prototype, showing
demonstration videos seems like an effective method of collecting user feedback and
ideas for improvement.

54

5 Ewvaluation

5.2 Hololayer Collaboration

5.2.1 End-to-end latency

We measured the end-to-end latency between two Hololayer iOS clients, from a modifi-
cation being made on one client, to the modification becoming visible on the other. The
end-to-end latency therefore includes processing time on the modifying client until a
message is sent over WebSockets to the Collaboration Server, the processing time on the
Collaboration Server until the state is cached in the key-value stored, the message being
sent to other clients, the processing time on the receiving client and finally rendering
the change in Unity’s game loop. We took screen-recording of the Hololayer iOS client,
while modifying the rotation of a Hologram. Within the view of the recording client,
we held a second phone, which observed the Hologram being modified (see Figure 5.1).
By analyzing the screen-recording frame-by-frame, we calculate the latency between
the Hologram being modified on the recording client and the second client showing
the result of the modification.

The delay between the client doing to the modification and the other client displaying
the modification was 7-8 frames at a frame-rate of 33.12. The end-to-end latency is
therefore between 211 to 240 milliseconds, with the Collaboration Server deployed
on AWS with a ping round trip time of just 12 milliseconds. Note that messages are
sent with delays of up to 50 milliseconds because each CollabProperty<T> uses a
UniRx.Sample operator at 20 Hz to limit the number of outgoing messages per property.
This could certainly be implemented differently, allowing each property update to be
sent immediately if there had not been an update within the last 50 milliseconds.

5.2.2 Limitations and Problems
Key Size

Since the Collaboration Server is a key-value store and we need to send the key with
every put or delete or message, the key takes up most of the data within a message,
as we synchronize single Hologram properties, which are usually comprised of rather
simple and small data types. For example, two of the properties that are being modified
most frequently are the position and rotation properties, which are both represented by
three float values each. Therefore, the values of each property take up 3 * 4 = 12 bytes,
but the keys are represented as a strings. In both cases, the key is 55 bytes long (see
Section 4.2.3. The key size could be reduced in various ways.

GUID Representation The Hologram’s Guid is serialized as a string within the key,
even though a GUID is actually defined as a 16 bytes integer [21]. The human-readable

55

5 Evaluation

. @ Felix' Place @ /O @

Hub @FE“X'TheSiS Align Find Create

Figure 5.1: Hololayer client running on two iPhones, where one person is moving an
Image Hologram.

string representation of the GUID is a series of lowercase hexadecimal digits in groups
of 8, 4, 4, 4, and 12 digits and separated by hyphens [21]. It’s therefore taking up
8+4+4+4+12+4+4%2 = 36 bytes as a UTF-8 string within the key, instead of
just 16 bytes in its integer representation. However, even when replacing the GUID
representation, the key’s relation and property name parts being strings would still
make the key portion of each message relatively large, compared to the value. For a
Hologram position property, the reduced size of the key would be 35 bytes instead
of 55 bytes, which is still almost three times the size of the Vector3 value size at 12
bytes. The total message size for one position property update would be decreased
from currently 76 bytes to 56 bytes, which is a reduction of 26.3%.

Key Aliases A very efficient way of transmitting key references is adding support for
key aliases, which were also introduced in version 5 of the MQTT protocol as Topic

56

5 Ewvaluation

Aliases [22]. A topic alias in MQTTS5 "is an integer value that is used to identify the
Topic instead of using the Topic Name" [22]. The MQTTS5 specification states that "this
reduces the size of the PUBLISH packet, and is useful when the Topic Names are long
and the same Topic Names are used repetitively within a Network Connection", which
is exactly the case with properties like Hologram position or rotation, which are often
transmitted up to 20 times per second [22] for a single Hologram. The Collaboration
Server could publish a mapping from a long to the actual key. E.g. the alias could be
defined as a key-value pair in the relation "Alias", followed by the target key:

Alias{0x00}Holograms{0x00}{HologramGUID}{0x00}position = 1

The alias could then be used in place of the actual key by both client and server,
reducing the message size drastically. Since the first byte of a Collaboration Server
message contains the message type, for each existing message type, a corresponding
alias message type could be defined. For a Hologram’s position or rotation attribute,
the message size for a single (alias) put message could be decreased from currently
76 bytes to just 21 bytes, which is a significant reduction of 72.4%. Of course, the key
aliases would need to be transmitted in advance, also requiring bandwidth, but only
once. For property keys that may be transmitted hundreds of times, that is reasonable.
The client application may specify for which properties aliases should be created.

57

6 Conclusion

6.1 Spatial Design Prototype

We have demonstrated how a VR-based spatial design application could be developed
and used, mainly targeting level design for games. The user study has shown that
people with more than 50 hours of experience in VR would enjoy using VR-based
spatial design tools like the prototype developed in this thesis in addition to their usual
workflows. A VR-based editor may not be able to completely replace established 2D
Editor tools based on keyboard and mouse input, but can supplement them well. Most
user study participants rate the features and tools developed in the prototype as highly
important.

We have found comprehensive groups of features that are essential for collaborative
VR environments, like real-time communication and chat, tools for effective commu-
nication like laser pointers, annotations and feedback (text, audio, image, drawings),
change tracking and version control including change proposals and approval, access
control and permissions, travel and orientation within the virtual environment includ-
ing teleportation to other collaborators, asset sharing and importing to add new assets
to the pre-defined assets and private workspaces separate from the shared environment.
By combining the prototype features with the feedback and ideas of the user study
participants, a proper collaborative spatial design application could be developed.

Undo/Redo is one of the most common functionalities in any editing software, but
complex to implement in multi-user environments. The Undo/Redo methods imple-
mented or proposed, especially the View-based method, enable intuitive collaboration
in 3D environments. They solve some of the problems inherent with reversible changes
in multi-user 3D environments, like being able to revert other users’ changes while not
interrupting their workflow.

The participants of the user study praised the usability considerations of some of the
features, like "recent assets" or "repeated placement” in the Asset Menu, or spawning
objects far enough away to not feel uncomfortable. All features of the prototype were
received very well by the user study participants, though there were many suggestions
for improvements.

58

6 Conclusion

6.2 Hololayer Collaboration

In this work, I have introduced real-time collaborative features to an industrial Aug-
mented Reality (AR) system known as Hololayer. Originally, the AR client interacted
with the backend server through a REST API, where requests were made on demand.
This meant that any state changes applied to the underlying data, such as Hologram
data, were not observed until a user triggered another update. By integrating this
approach with a real-time distributed key-value store, namely the Collaboration Server,
I have successfully implemented live updates of Holograms by implementing reactive
design patterns. Instead of retrieving all Hologram state through the REST API, partial
state updates to specific Hologram properties are shared and applied on all clients
connected to the Collaboration Server.

The architecture developed for enabling real-time collaboration within the Holo-
layer client is well-structured, organized, and purpose-driven. By leveraging reactive
programming with UniRx, the implementation efficiently handles asynchronous data
streams, resulting in a system that can respond to real-time updates of Holograms.
Place, Layer, and other data could be synchronized through the Collaboration Server in
a similar fashion.

The modular design of the components facilitates a clear separation of concerns. The
CollabPropertyRepository manages connections and message handling, while the
CollabProperty<T> and CollabHologram components focus on synchronizing individ-
ual properties of Holograms. The CollabHologramRepository oversees the collection
of Holograms and allows them to be created, fetched, updated or deleted from within
other components of the Hololayer client.

The utilization of existing interfaces, such as the THologramRepository, enhances the
system’s flexibility and extensibility. This design choice allows for easier integration
of new features or modifications to existing ones, without causing significant disrup-
tions to the overall codebase. Implementing the CollabHologramRepository required
minimal intervention in the existing codebase.

Overall, the proposed architecture serves as a foundation for the Hololayer client,
effectively addressing the need for real-time collaboration in industrial applications.
The implementation enables the development of more complex collaborative features,
like the ones discussed for the Spatial Design Prototype. As with any system, there is
room for further improvement and expansion to cater to evolving requirements.

59

6 Conclusion

6.3 Future Work

6.3.1 Collaborative Features

Given the large amount of features both the user study participants and myself came
up with, there are many things that could be implemented to create a better, more
complete version of this prototype or an actual product. Depending on the use case,
different features should be prioritized. Before deciding on which features are the most
important ones, a more in-depth user study could be done with the corresponding
target audience, asking participants which features from a list of features they find
most important. However I would argue that all of the features proposed in my thesis
are important to a collaborative spatial design environment. Here are a few things I
would have liked to implement:

* Proximity voice chat with the possibility to also speak to all connected users.

¢ Collaborative menus, i.e. menus that can be controlled by multiple users. For
example the Asset Palette could potentially be scrolled through by multiple users.

¢ Adding undo/redo previews to my implementation. Each undo/redo command
could have its own implementation on how to visualize its actions.

¢ Support for making change proposals that can be approved by other collaborators.
Each proposal could have multiple variations that collaborators could switch
between and vote on.

6.3.2 Additional User Studies

We have been able to collect a large number of important features that would make
a collaborative spatial design application useful. However we have yet to evaluate
the proposed features in comparison with traditional editor tools. For example, a
user study could be designed to measure efficiency at certain level design tasks, like
furnishing an appartment, comparing users working within the Unity Editor and users
in the VR prototype.

6.3.3 Hololayer Collaboration

Non-stateful and Transient Data Messages While the current collaboration architec-
ture relies on key-value pairs to be stored on the Collaboration Server for synchronizing
the state of Holograms, there are real-time collaboration features that may necessitate
the implementation of additional functionality. For example, certain data types or

60

6 Conclusion

actions may not require persistent storage on the Collaboration Server, but must simply
be forwarded to other clients in real-time. In such cases, implementing a mechanism
for transmitting transient data or events, which are not stored on the server, can be
beneficial. This could involve introducing a dedicated communication channel or
protocol for sharing temporary or real-time information, such as user interactions or
live audio streams among clients.

Support for Layers and Places In this thesis, we only enabled real-time collaboration
on Holograms. Places and Layers are still only updated on Hololayer clients when
they actively trigger an update of their data repositories, e.g. by opening the list of
Layers or Places. Supporting Places and Layers could be achieved in the same way that
Holograms are synchronized between clients.

Blocking Simultaneous Key-Value Writes Currently, all clients can write to a key
whenever they want, which may happen to problems when two clients try to modify
a Hologram simultaneously. The Collaboration Server should provide a locking or
ownership functionality, allowing clients to request temporary exclusive write access to
a specific key or range of keys. The Unity Netcode for GameObjects library requires
clients to request Ownership of NetworkObjects before they can modify the object’s
properties.

61

List of Figures

3.1

3.2

3.3

34

3.5

4.1

4.2

4.3

Left: User list with buttons for teleporting to other users. Right: Main
menu with tool selection buttons for laser pointer, 3D pen, asset menu
and measurement tool. L Lo Lo
Left: Asset Menu with assets categorized in different tabs. Center: An as-
set that was selected through the menu is attached to the RayInteractor
and being placed. Right: The rotation axis is visualized for the object
being placed.. L
The user on the left observes the other user on the right, while he is
pointing with the Laser Pointer. The distance measurement is shown to
bothusers.
Left: Writing text in 3D. Right: Placeholder for a door asset to be added.
The arrow indicates that the door should be functional.
Left: Box on top is highlighted by a yellow tint as the next undo target.
The yellow lines were added to clarify which box is highlighted, as it is
hard to see in the screenshot. Center: Collaborator is drawing using the
3D Pen. Right: User is undoing the drawing made by the other user.

Data flow of incoming messages that are parsed into their key-value
pairs and emitted in Observables for each key. CollabProperties inside
CollabHologram instances subscribe to specific key-value pairs, like for
example the position key ("Hologram{0x00}{Hologramld}{0x00}position")
and modify their internal Hologram instances that in turn are subscribed
to by the CollabHologramRepository, which is keeping a collection of
CollabHolograms. Other components can then access Hologram data
through the CollabHologramRepository.
Class diagram showing classes and interfaces involved in the serialization
of value buffers received and sent to the Collaboration Server. The three
implementations of the ICollabBufferReaderWriter<T> interface are
just examples and various other implementations for other types exist.
Collaboration menu added to the Hololayer iOS and Android clients.

17

20

40
44

62

List of Figures

5.1 Hololayer client running on two iPhones, where one person is moving
an Image Hologram. 56

63

List of Tables

3.1 User Story Feature List

64

Bibliography

(1]

[10]
[11]

Y. Huang, S. Shakya, and T. Odeleye. “Comparing the functionality between
virtual reality and mixed reality for architecture and construction uses”. In:
Journal of Civil Engineering and Architecture 13.1 (2019), pp. 409—414.

V. Lehrbaum, A. MacWilliams, J. Newman, N. Sudharsan, S. Bien, K. Karas,
C. Eghtebas, S. Weber, and G. Klinker. “Enabling Customizable Workflows for
Industrial AR Applications”. In: 2022 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR). 2022, pp. 622-630. po1: 10.1109/ISMARE5827 .2022.
00079.

U. Exner and D. Pressel. Basics Spatial Design. Berlin, Boston: Birkh&user, 2017.
IsBN: 9783035612394. poI: doi:10.1515/9783035612394. URL: https://doi.org/
10.1515/9783035612394.

NVIDIA. Holodeck Product Website. 2017. URL: https://www.nvidia.com/en-

us/design-visualization/technologies/holodeck/.
Unity. EditorXR Website. URL: https://unity.com/de/editorxr.

L. Beever, S. Pop, and N. W. John. “LevelEd VR: A virtual reality level editor
and workflow for virtual reality level design”. In: 2020 IEEE Conference on Games
(COG).ZOZO,pp.136—143.DOI:10.1109/COG47356.2020.9231769

J. Choi. “Merging Three Spaces: Exploring User Interface Framework for Spatial
Design in Virtual Reality”. MA thesis. 2016.

C. Rendl. “Regionales Undo/Redo fiir Multi-User-Anwendungen auf grofien
interaktiven Oberflachen [Regional Undo/Redo for Multi-User-Applications on
Large Interactive Surfaces]”. MA thesis. 2011.

S. Weber, M. Ludwig, and G. Klinker. “Ubi-Interact: A modular approach to
connecting systems”. In: EAI Endorsed Transactions on Mobile Communications and
Applications 6.19 (July 2021). por: 10.4108/eai.14-7-2021.170291.

Unity. Netcode for GameQObjects. URL: https://docs-multiplayer.unity3d.com/.

Unity. XR Interaction Toolkit Manual. URL: https://docs.unity3d.com/Packages/
com.unity.xr.interaction.toolkit®2.3/manual/index.html.

65

https://doi.org/10.1109/ISMAR55827.2022.00079
https://doi.org/10.1109/ISMAR55827.2022.00079
https://doi.org/doi:10.1515/9783035612394
https://doi.org/10.1515/9783035612394
https://doi.org/10.1515/9783035612394
https://www.nvidia.com/en-us/design-visualization/technologies/holodeck/
https://www.nvidia.com/en-us/design-visualization/technologies/holodeck/
https://unity.com/de/editorxr
https://doi.org/10.1109/CoG47356.2020.9231769
https://doi.org/10.4108/eai.14-7-2021.170291
https://docs-multiplayer.unity3d.com/
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.3/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@2.3/manual/index.html

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

R. Nystrom. Game Programming Patterns, Command Pattern. 2014. URL: http :
//gameprogrammingpatterns.com/command.html.

HiveMQ. MQTT Publish/Subscribe Pattern. 2015. URL: https://www.hivemq. com/
blog/mqtt-essentials-part2-publish-subscribe/

N. Pereira, A. Rowe, M. W. Farb, I. Liang, E. Lu, and E. Riebling. “ARENA: The
Augmented Reality Edge Networking Architecture”. In: 2021 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR). 2021, pp. 479—488. por:
10.1109/ISMAR52148.2021.00065.

R. C. Martin and J. O. Coplien. Clean code: a handbook of agile software craftsmanship.
Upper Saddle River, NJ [etc.]: Prentice Hall, 2009. 1sBN: 9780132350884 0132350882.
URL: https://www.amazon.de/gp/product/0132350882/ref=oh_details_o00_
s00_100.

Y. Kawai. UniRx (Reactive Extensions for Unity). URL: https : //github . com/
neuecc/UniRx.

.NET Foundation. Reactive Extensions (Rx). URL: https://github.com/dotnet/
reactive.

.NET Foundation. ReactiveX Online Documentation. URL: https://reactivex.io/
documentation/operators.html.

Google. Protocol Buffers. 2008. URL: https://protobuf .dev/.

Microsoft. .NET Standard 2.1 - System.Collections.Generic.Dictionary - Online Doc-
umentation. URL: https : / / learn . microsoft . com / en - us / dotnet / api /
system. collections . generic.dictionary-27redirectedfrom=MSDN&view=
netstandard-2.1.

Microsoft. .NET System.Guid Documentation. URL: https://learn.microsoft.
com/de-de/dotnet/api/system.guid?view=netstandard-2.1.

OASIS Open. MQTT 5 Specification. 2019. URL: https://docs.oasis-open.org/
mqtt/mqtt/v5.0/0s/mqtt-v5.0-os.html.

66

http://gameprogrammingpatterns.com/command.html
http://gameprogrammingpatterns.com/command.html
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/
https://doi.org/10.1109/ISMAR52148.2021.00065
https://www.amazon.de/gp/product/0132350882/ref=oh_details_o00_s00_i00
https://www.amazon.de/gp/product/0132350882/ref=oh_details_o00_s00_i00
https://github.com/neuecc/UniRx
https://github.com/neuecc/UniRx
https://github.com/dotnet/reactive
https://github.com/dotnet/reactive
https://reactivex.io/documentation/operators.html
https://reactivex.io/documentation/operators.html
https://protobuf.dev/
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2?redirectedfrom=MSDN&view=netstandard-2.1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2?redirectedfrom=MSDN&view=netstandard-2.1
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2?redirectedfrom=MSDN&view=netstandard-2.1
https://learn.microsoft.com/de-de/dotnet/api/system.guid?view=netstandard-2.1
https://learn.microsoft.com/de-de/dotnet/api/system.guid?view=netstandard-2.1
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html

Appendix

6.1 Collaborative Spatial Design User Study

67

Collaborative Spatial Design in Virtual
Reality (VR)

In this user study, we are collecting ideas and opinions on features for a VR-based spatial
design application. Spatial design encompasses a variety of fields, such as level design in
game development, interior or architectural design, industrial planning, and other
disciplines that involve designing 3D environments. As part of my master's thesis, | have
developed a prototype using the Unity game engine that showcases several features and
tools specifically designed for collaborative spatial design processes.

The primary objective of this user study is to evaluate the usefulness of each tool in a
collaborative spatial design application and gather user suggestions for additional
features. Please note that we are not focusing on the user interface (Ul) or user
experience (UX) aspects of the application, but rather on the general usefulness and
potential impact of each feature within a collaborative spatial design context.

First, we will ask you to come up with feature ideas yourself. Afterwards, you will be
shown demonstrations of the prototype's features, and we will ask for your feedback on
their usefulness and any suggestions you may have for improving or expanding the
application. Your input is invaluable in helping us refine the prototype and better
understand the needs of users in the spatial design field.

* Gibt eine erforderliche Frage an

1. Informed Consent Form *

I have had the opportunity to ask any questions related to this study, and received
satisfactory answers to my questions, and any additional details | wanted.

| have been informed that | can abort the questionaire any time without needing to
provide reasons.

| understand that the collected data taken during this questionaire or subsequent
interviews will be evaluated for this research.

| understand that relevant sections of the data collected during the study may be
looked at by individuals from the research group Augmented Reality of TU Munich and/or
Siemens, where it is relevant to my taking part in this research. | give permission for
these individuals to have access to my responses.

| am aware that excerpts from this questionaire or subsequent interviews may be
included in publications to come from this research. | grant permission to use direct
quotes of my answers. Quotations will be kept anonymous.

68

2. How old are you? *

3. Please select your gender. *

Markieren Sie nur ein Oval.

Q Female

C) Male

O Non-binary

(") Prefer not to answer

D Sonstiges:

4. What is your current employment status? *

Markieren Sie nur ein Oval.

() Student (not employed)

D) Working student (Werkstudent)
) Full-Time Employee

D Part-Time Employee

D Self-employed

Q Unemployed

() Prefer not to answer

() Sonstiges:

5. Optionally specify your occupation (E.g. Software Engineer, Unity Developer, ...)

69

6. Areyou a left- or right-handed? *

Markieren Sie nur ein Oval.

Left-handed
Right-handed

Both

7. How frequently do you play video games on average per week? *

Markieren Sie nur ein Oval.

Not at all

< 5 hours
5-10 hours
10-15 hours
15-20 hours

> 20 hours

8. For which platforms have you developed software or games in the past,
including non-programming tasks like UX design?

Augmented Reality (Head-mounted)
Augmented Reality (Hand-held)
Virtual Reality

PC

Consoles

Mobile

Sonstiges:

70

9. How familiar are you with Virtual Reality (VR) technology? *

Markieren Sie nur ein Oval.

Not familiar at all
Slightly familiar
Moderately familiar
Very familiar

Extremely familiar

10. How many hours of experience do you have using VR applications?
(approximate)

Less than 10 hours
10-50 hours

50-100 hours
100-500 hours

More than 500 hours

Sonstiges:

11. Have you used any collaborative or design-related VR applications before? *
(e.g., social VR platforms, Gravity Sketch, Tilt Brush, etc.)

Markieren Sie nur ein Oval.

Yes

No

71

In this part of the study, we ask you to come up with key use cases and tools that you
consider most beneficial for collaborative spatial design tasks in Virtual or Augmented
Reality, like level design for games, interior design, architecture, industrial planning or
other spatial design fields. Imagine you want to design a room or an open space in virtual
reality, or you want to annotate a real-world environment using augmented reality. Maybe
also think about collaborative tools or software you have used outside of spatial design
tasks and how their features could translate into 3D/XR.

The images below illustrate some environments you could be performing spatial design
tasks in, but you can of course think of something else.

Fill out as many or few of the boxes below as you like - they are just placeholders to
provide enough space.

Sample Idea:

I'm using a collaborative spatial design application in VR and want to find other users in
the 3D scene. This can be achieved by teleporting to them.

(Non-exhaustive) Sample Scenarios

72

12. Idea #1

13. Idea #1 Importance

Least Important

Most Important

14. Idea #2

73

31. Idea #10 Importance

Least Important

Most Important

In the following sections, you'll be shown descriptions and videos of features of a
collaborative level design prototype for the Unity Game Engine, which was developed for
this thesis. The goal is not to evaluate the user interface (Ul) or user experience (UX) of
the prototype, but the general usefulness/importance of each feature and how they could
be improved. If some UI/UX strikes you as especially good or bad, or is inherent to the
feature described, go ahead and comment on it if you want to. Please watch the videos to
fully understand the features. The textual feature summaries below the videos are
optional to read - they may not cover all aspects of the video but can provide additional
information.

74

Demonstration Video

http://youtube.com/watch?v=50RvQ-

Feature Summary

The Asset Palettes are pre-defined assets that can be spawned by every collaborator in a
networking session. These assets are organized into categories based on the folders they are
located in, where the folder name is considered the category, so that they can be added to the
Asset Menu of the prototype quickly. Every asset needs to have a NetworkObject and
CollabObject component in order to be included in the asset palettes, but adding these
components to the asset can be done automatically inside the Unity Editor through Editor
Scripts that will prepare every prefab in a certain path. The Asset Menu has a "Recent" tab that
contains the recently used assets. It does not only contain the assets you previously used, but
also assets used by other users in the current collaboration session. This allows you to quickly
re-use assets you had picked out before, or find the ones being used by your collaborators. By
enabling "Repeated Placing" the same asset can be placed again without having to re-select
this asset from the asset palette menu.

75

32. Importance Rating *

Least Important

Most Important

33. Please explain your reasoning behind the rating you gave for the importance of *
this feature.

34. Would you want to use this feature? Please elaborate. *

76

35. How would you improve this feature? Would you implement it differently or *
replace it with something else?

Demonstration Video

http://youtube.com/watch?

v=ijul_dHFAPE

Feature Summary

Users can draw 3D lines using the pen annotation tool. They can add text or any other shape
they can imagine. For example, they may draw temporary assets for which there is no real
asset yet, or they can annotate existing assets that need changes. By drawing collaboratively,
multiple users can iterate on design ideas.

77

36. Importance Rating *

Least Important

Most Important

37. Please explain your reasoning behind the rating you gave for the importance of *
this feature.

38. Would you want to use this feature? Please elaborate. *

78

39. How would you improve this feature? Would you implement it differently or *
replace it with something else?

Demonstration Video

http://youtube.com/watch?

v=3779hus1BFA

Feature Summary

Reverting or re-applying changes can be tricky when multiple users are working in the same
environment. The prototype has two different algorithms to specify which objects to target for
Undo/Redo. The Local Undo/Redo algorithms allows the user to undo/redo only his own
changes. The View-based Undo/Redo algorithm allows to revert or re-apply modifications that
are currently within the view of the user, independently of who authored the modification. The
next Undo/Redo target is highlighted when the user hovers the Undo/Redo button with a
controller's ray interactor.

79

40. Importance Rating *

Least Important

Most Important

41. Please explain your reasoning behind the rating you gave for the importance of *
this feature.

42. Would you want to use this feature? Please elaborate. *

80

43. How would you improve this feature? Would you implement it differently or *
replace it with something else?

Demonstration Video

http://youtube.com/watch?

v=eZot_G6sSEw

Feature Summary

In order to quickly find other collaborators in the virtual 3D scene, there's a user list in the main
menu, through which you can teleport to a user. The teleportation algorithm tries to place you
in a way that you do not obstruct the view of the user you're teleporting to by prioritizing
locations to the left/right with respect to his viewing direction of the target user. If possible, it
also tries to place you at a socially comfortable distance away from the target user, starting
with a radius of 1.8 meters and only placing you closer, if there's not enough space. The
algorithm also expects a minimum distance to other objects of 0.5 meters, so that you're not
placed halfway into a wall.

81

44. Importance Rating *

Least Important

Most Important

45. Please explain your reasoning behind the rating you gave for the importance of *
this feature.

46. Would you want to use this feature? Please elaborate. *

82

47. How would you improve this feature? Would you implement it differently or *
replace it with something else?

Demonstration Video

http://youtube.com/watch?

v=LtLN8MxThgY

Feature Summary

The Laser Pointer feature allows users to point in any direction and at objects with their
controller. A red line is rendered from the controller forward. It can be used to coordinate with
other collaborators and to measure the distance from the controller to the object hit with the
laser. Measured values are visible to other users, too.

83

48. Importance Rating *

Least Important

Most Important

49. Please explain your reasoning behind the rating you gave for the importance of *
this feature.

50. Would you want to use this feature? Please elaborate. *

84

51. How would you improve this feature? Would you implement it differently or *
replace it with something else?

52. Now that you have seen the prototype's features and came up with your own *
ideas, what do you think are the most important features and use-cases,
including your own ideas?

53. Considering your current or potential involvement in spatial design projects, *
would you want to use a VR-based collaborative spatial design tool like the one
presented in this study, assuming further improvements and a more
comprehensive feature-set? Please explain your reasoning.

Dieser Inhalt wurde nicht von Google erstellt und wird von Google auch nicht unterstiitzt.

Google Formulare

85

	Abstract
	Zusammenfassung
	Introduction
	Research Questions
	Extended, Virtual and Augmented Reality
	From Spatial Design to Level Design in VR

	Related Work
	Collaborative XR and VR for Spatial Design
	Networking

	Collaborative Virtual Reality Prototype
	Key Use Cases
	XR Interaction Toolkit
	Networking (Netcode for GameObjects)
	NetworkObject
	NetworkBehaviour
	NetworkVariable<T>
	NetworkTransform
	Remote Procedure Calls (RPCs)
	NetworkManager

	Tools and Features
	Asset Menu and Placement
	Object Modification (99993em.5|CollabXRGrabInteractable|)
	Laser Pointer
	3D Pen
	Teleportation

	Collaborative Undo/Redo
	Undo/Redo Architecture
	Visualizing Undo/Redo Targets
	Undo/Redo Strategies
	Combining Methods
	Undo/Redo Commands

	Avatar and Personalization

	Collaborative Industrial Augmented Reality Implementation
	Hololayer
	Data Model
	Authorization
	Existing Approach to Data Updates

	Collaboration Server
	Overview
	Collaboration Server Operations
	Storing Hologram State
	Committing Hologram State
	Scaling and Partitioning
	Cloud vs Edge Node
	Choice of Communication Protocol

	Implementation
	UniRx, Subjects and Observables
	Collaboration Components
	State Synchronization
	Serialization of 99993em.5|CollabProperty<T>| Values
	Performance Considerations
	Collaborative Features

	Evaluation
	Collaborative Spatial Design User Study
	Participants
	Use-Case and Feature Brainstorming
	Virtual Reality Prototype Feature Feedback
	Using Collaborative VR for Spatial Design Tasks
	Limitations and Problems

	Hololayer Collaboration
	End-to-end latency
	Limitations and Problems

	Conclusion
	Spatial Design Prototype
	Hololayer Collaboration
	Future Work
	Collaborative Features
	Additional User Studies
	Hololayer Collaboration

	List of Figures
	List of Tables
	Bibliography
	Appendix
	Collaborative Spatial Design User Study

